一、新一代钢铁材料的重大基础研究(论文文献综述)
江苏省人民政府办公厅[1](2021)在《江苏省人民政府办公厅关于印发江苏省“十四五”科技创新规划的通知》文中指出苏政办发[2021]62号各市、县(市、区)人民政府,省各委办厅局,省各直属单位:《江苏省"十四五"科技创新规划》已经省人民政府同意,现印发给你们,请认真组织实施。2021年9月2日江苏省"十四五"科技创新规划为深入践行"争当表率、争做示范、走在前列"新使命新要求,大力实施创新驱动发展战略,加快建设科技强省,打造具有全球影响力的产业科技创新中心,根据"十四五"国家科技创新规划和《江苏省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》,制定本规划。
郭皓[2](2021)在《外加改性纳米粒子技术诱导钢中铁素体形核的基础研究》文中研究指明钢中残留的大型夹杂物会导致材料裂纹萌生而损害其机械性能,同时由于晶粒粗大而导致大幅度降低材料的强韧性。上世纪有学者提出了“氧化物冶金”技术用于解决以上问题,即控制材料中细小弥散的夹杂物作为异质形核点,诱导晶内铁素体形核。随着外加技术和设备的不断成熟,通过喷吹等方式向钢液中加入合适成分的第二相粒子,可以起到促进晶粒细化、细化夹杂物等作用。之前有研究在钢中外加纳米级第二相粒子,一定程度细化了钢中的夹杂物和微观组织。然而,由于纳米粒子比表面积大、表面能高的特性,加入钢液后粒子容易聚集并上浮到钢液表面,造成纳米粒子在钢液中的使用效率大幅度降低。纳米粒子之间的团聚现象是软团聚,传统物理手段不能从本质上消除粒子间的作用力,因此有必要改变炼钢用纳米粒子的表面特性。首先,采用化学手段对MgO纳米粒子表面改造,根据表征结果,制备出一种新型的具有核壳结构的炼钢用纳米粒子,碳化后的粒子表面有一层厚度为10nm的碳层,在溶液中具有良好的单分散性。在氦气气氛下,原始MgO纳米粒子在高温钢液的润湿角达到了 130°,而表面改造的MgO@C纳米粒子的润湿角只有50°,具备更小的润湿角意味着改性后的纳米粒子具有更良好的润湿性。通过高温预实验分段取样,测定合金元素的含量计算得知,试验钢中改性纳米粒子的收得率达到了 65%,远高于原始纳米粒子的收得率。利用化学表面改性的方法,提高了炼钢用纳米粒子的收得率,解决外加纳米粒子技术的关键技术问题。其次,应用改性的炼钢用纳米粒子设计高温冶炼实验,研究发现纳米粒子对钢中非金属夹杂物的特性有很大影响。根据Factsage热力学模拟软件和SEM-EDS测试结果得知,纳米试验钢中生成大量不规则形状的TiN夹杂物,而且MgAl2O4尖晶石也逐渐取代了原始钢中单相Al2O3夹杂物。添加同质量的纳米粒子时,含改性纳米粒子的试验钢中的细小夹杂物的数量也高于含原始纳米粒子的试验钢。特别地,在含0.03%改性MgO@C纳米粒子的试验钢中,亚微米级别的夹杂物数量比例达到了所有夹杂物数量的77.2%。细小的夹杂物可以阻碍原奥氏体晶粒迁移并诱导针状铁素体形核。根据夹杂物异质形核诱导铁素体的理论,热力学计算得出TiN夹杂物的等效临界形核直径为0.346μm。改性纳米粒子在不同冷却条件下,对试验钢中微观组织的演变也有很大影响。在低碳高合金钢中,冷却速率的增加会减少试验钢中多边形铁素体的比例,并且会生成贝氏体相。更大的冷却速度为铁素体相变提供了更高的过冷度。同时,纳米试验钢中细小弥散的夹杂物会对原奥氏体晶界起到钉扎的作用,试验钢中细小的晶粒也会促进针状铁素体形核。在原位观察实验中,板条铁素体总是沿着晶界形成,而且总是先于针状铁素体形核,这些铁素体大多是在夹杂物表面被诱导。当冷却速率上升到-15℃/s时,板条铁素体和针状铁素体的开始转变温度都会降低,并且针状铁素体的比例会增大。同时,一定温度范围内,针状铁素体的长度与时间呈线性比例关系,说明在相变过程中针状铁素体形核的驱动力随时间基本不变。当冷速相同时,纳米试验钢中针状铁素体的开始形核温度高于原始钢,而且形核速率更大。最后,将外加纳米粒子技术应用于试验钢形变诱导相变强化工艺中,通过控制热压缩形变参数,研究双强化技术下实验钢中微观组织的演变及力学性能的变化。通过热压缩形变实验得知,更大的形变量导致钢中铁素体与马氏体相的平均尺寸均降低。钢中出现了大量细小链状的形变诱导铁素体和交错的针状铁素体,极大地提升了钢中微观组织的交错度,提高了材料的强韧性。在同一形变温度下,纳米钢中的应力峰值始终高于原始钢中的应力峰值。当形变温度为750℃时,纳米试验钢对应的最大应力峰值为516MPa,比原始钢的最大应力峰值高出28.4%。
刘伟岩[3](2020)在《战后科技革命推动日本产业升级研究 ——基于创新体系的视角》文中研究表明2008年经济危机后,为摆脱经济下行的轨道,美国、日本、德国先后提出了“重振制造业”(2009年)、日本版“第四次工业革命”(2010年)、“工业4.0”(2012年)等战略计划,而我国也于2015年提出了“中国制造2025”的行动纲领。这些战略规划的陆续出台拉开了以大数据、云计算、物联网(Io T)、人工智能(AI)等为标志的新一轮科技革命的帷幕。而作为第二经济大国,我国应如何借助于这一难得机遇来推动国内产业升级则成为亟待思考的问题。回顾日本走过的“路”可知,其也曾作为“第二经济大国”面临过相似的难题,且从中日经济发展历程比较和所面临的“三期叠加”状态来看,我国现阶段也更为接近20世纪70年代的日本,而日本却在当时的情况下借助于以微电子技术为核心的科技革命成功地推动了国内产业的改造升级。基于此,本文以日本为研究对象并将研究阶段锁定在其取得成功的战后至20世纪80年代这一时期,进而研究其所积累的经验和教训,以期为我国接下来要走的“路”提供极具价值的指引和借鉴。在对熊彼特创新理论以及新熊彼特学派提出的技术经济范式理论、产业技术范式理论、国家创新体系理论和部门创新体系理论等进行阐述的基础上,本文借助于此从创新体系的视角构建了“科技革命推动产业升级”的理论分析框架,即:从整体产业体系来看,其属于技术经济范式转换的过程,该过程是在国家创新体系中实现的,且两者间的匹配性决定着产业升级的绩效;而深入到具体产业来看,其又是通过催生新兴产业和改造传统产业来实现的,对于此分析的最佳维度则是能够体现“产业间差异性”的部门创新体系,同样地,两者间的匹配性也决定着各产业升级的成效。回顾科技革命推动日本产业升级的历程可知,其呈现出三个阶段:20世纪50~60年代的“重化型”化,70~80年代的“轻薄短小”化,以及90年代后的“信息”化。其中,“轻薄短小”化阶段是日本发展最为成功的时期,也是本文的研究范畴所在。分析其发生的背景可知:虽然效仿欧美国家构建的重化型产业结构支撑了日本经济“独秀一枝”的高速发展,但在日本成为第二经济大国后,这一产业结构所固有的局限性和问题日渐凸显,倒逼着日本垄断资本进行产业调整;而与此同时,世界性科技革命的爆发恰为其提供了难得的历史机遇;但是这种机遇对于后进国来说在一定意义上又是“机会均等”的,该国能否抓住的关键在于其国内的技术经济发展水平,而日本战后近20年的高速增长恰为其奠定了雄厚的经济基础,且“引进消化吸收再创新”的技术发展战略又在较短的时间内为其积累了殷实的技术基础。在这一背景下,借助于上文所构建的理论分析框架,后文从创新体系的视角解释了战后以微电子技术为核心的科技革命是如何推动日本产业升级以及日本为何更为成功的。就整体产业体系而言,科技革命的发生必然会引致技术经济范式转换进而推动产业升级,且这一过程是在由政府、企业、大学和科研机构以及创新主体联盟等构建的国家创新体系中实现的。战后科技革命的发源地仍是美国,日本的参与借助的是范式转换过程中创造的“第二个机会窗口”,换言之,日本的成功得益于对源于美国的新技术的应用和开发研究,其技术经济范式呈现出“应用开发型”特点。而分析日本各创新主体在推动科技成果转化中的创新行为可以发现,无论是政府传递最新科技情报并辅助企业引进技术、适时调整科技发展战略和产业结构发展方向、制定激励企业研发的经济政策和专利保护制度、采取措施加速新技术产业化的进程、改革教育体制并强化人才引进制度等支持创新的行为,还是企业注重提升自主创新能力、遵循“现场优先主义”原则、实施“商品研制、推销一贯制”、将资金集中投向开发研究和创新链的中下游环节以及培训在职人员等创新行为,或是大学和科研机构针对产业技术进行研究、重视通识教育和“强固山脚”教育以及培养理工科高科技人才等行为,亦或是“政府主导、企业主体”型的创新主体联盟联合攻关尖端技术、建立能够促进科技成果转化的中介机构、联合培养和引进优秀人才等行为都是能够最大限度地挖掘微电子技术发展潜力的。而这种“追赶型”国家创新体系与“应用开发型”技术经济范式间的相匹配正是日本能够更为成功地借力于战后科技革命推动产业升级的根因所在。进一步地从具体产业来看,科技革命引致的技术经济范式转换表现为新兴技术转化为新兴产业技术范式和改造传统产业技术范式的过程,这也是科技革命“双重性质”的体现。而对这一层面的分析则要用到能够体现“产业间差异性”的部门创新体系。在选取半导体产业和计算机产业作为新兴产业的代表,以及选取工业机器产业(以数控机床和工业机器人为主)和汽车产业作为微电子技术改造传统机械产业的典型后,本文的研究发现:由于这些产业在技术体制、所处的产业链位置、所在的技术生命周期阶段等方面的不同,其产业技术范式是相异的,而日本之所以能够在这些产业上均实现自主创新并取得巨大成功就在于日本各创新主体针对不同的产业技术范式进行了相应的调整,分别形成了与之相匹配的部门创新体系。而进一步比较各部门创新体系可知,日本政府和企业等创新主体针对“催新”和“改旧”分别形成了一套惯行的做法,但在这两类产业升级间又存在显着的差异,即:日本政府在“催新”中的技术研发和成果转化中均表现出了贯穿始终的强干预性,尤其是在计算机产业上;而在“改旧”中则干预相对较少,主要是引导已具备集成创新能力的“逐利性”企业去发挥主体作用。作为一种“制度建设”,创新体系具有“临界性”特点且其优劣的评析标准是其与技术经济范式的匹配性。日本能够成功地借力于以微电子技术为核心的科技革命推动国内产业升级的经验就在于其不仅构建了与当时技术经济范式相匹配的国家创新体系,而且注重创新体系的层级性和差异性建设,加速推进了新兴产业技术范式的形成,并推动了新旧产业的协调发展。但是,这种致力于“应用开发”的“追赶型”创新体系也存在着不可忽视的问题,如:基础研究能力不足,不利于颠覆性技术创新的产生,以及政府主导的大型研发项目模式存在定向失误的弊端等,这也是日本创新和成功不可持续以致于在20世纪90年代后重新与美国拉开差距的原因所在。现阶段,新一轮科技革命的蓬勃兴起在为我国产业升级提供追赶先进国家的“机会窗口”的同时,也为新兴产业的发展提供了“追跑”“齐跑”“领跑”并行发展的机遇,并为传统产业的高质量发展带来了难得的机会。由于相较于20世纪70年代的日本,我国现阶段所面临的情况更为复杂,因此,必须构建极其重视基础研究且具有灵活性的国家创新生态体系,重视部门创新体系的“产业间差异性”,形成与新兴产业技术范式相匹配的部门创新体系,以及建设能够促进传统产业技术范式演化升级的部门创新体系等。
邓帅[4](2020)在《首钢京唐“全三脱”炼钢过程铁素物质流调控的应用基础研究》文中指出为了建立“高效率、低成本的洁净钢生产平台”,首钢京唐设计和建设了“全三脱”这一“新一代可循环钢铁制造流程”。但是,首钢京唐“全三脱”工艺流程的实际生产过程中存在很多问题,一直为钢铁冶金界所关注,并亟待解决。本文基于首钢京唐“全三脱”炼钢过程铁水物质流调控现状,应用冶金流程工程学相关理论,对物质流运行的基本参数(时间、温度、物质量)进行了解析和仿真研究。在此基础上,研究了制约“三脱”比例提高的两个关键技术问题:废钢熔化以及转炉辅料成本。本文分析了“全三脱”炼钢过程物质流运行现状,研究表明,“三脱”比例、成本控制、成分控制以及时间和温度的控制,均未达到设计要求,控制水平与同类型钢厂也存在一定的差距,研究解决“全三脱”问题,应该站在整个钢铁制造流程整体优化的角度,以洁净钢生产平台全流程为着眼点,综合调控物质流的基本参数;通过对物质流运行时间进行解析得知,转炉生产率低、空炉等待时间长,脱磷炉、脱碳炉空炉等待时间平均为19.86分钟和15.91分钟,由于生产节奏慢,导致流程连续化程度不高,工序与工序间的运行,有很大一部分时间是在等待;通过对物质流运行温度进行解析得知,超低碳钢和低碳钢出钢钢水温度平均分别为1680℃和1666℃,与其他同类型钢厂相比出钢钢水温度偏高。原因就在于生产节奏慢,工序与工序之间等待时间长,导致运输过程温降大,需要更高的出钢钢水温度保证连铸中间包温度;利用Fluent软件对转炉空炉过程热状态进行模拟仿真,受空炉时间影响,转炉散热量变化范围为0.89~7.85× 107kJ;空炉时间增加30分钟,脱磷转炉、脱碳转炉散热量分别增加约2.34× 107kJ、4.13× 107kJ,在一定的冶炼周期内,脱磷转炉、脱碳转炉、常规转炉条件下的铁水温降分别增加约12.5℃、15℃、17℃,“三脱”工艺冶炼和常规冶炼对应的废钢加入量分别减少0.93%、0.75%;使用Plant Simulation软件,对物质流运行物质量建立仿真模型。结果表明,“三脱”比例从现有的33%提高到100%,流程连续化程度提高,转炉-连铸运输等待时间平均减少5-14分钟,对应出钢钢水温度可降低4.9~13.7℃。DeP-DeC的运输等待时间平均减少约10.14分钟,KR-DeP运输等待时间平均减少约11.62分钟,相当于入脱碳炉铁水升高1.93℃,入脱磷炉铁水升高2.21℃。由于流程生产节奏加快,转炉生产率从现有的50%左右提高到60%~70%,空炉时间的降低减少了散热,相当于脱磷炉铁水温度少降12.5℃,脱碳炉铁水温度少降15℃,可一进步降低生产成本;针对废钢熔化问题,对脱磷炉进行物料平衡与热平衡计算,可知废钢熔化热量不是其限制性环节,无论是铁水温度和成分来说,熔化现有比例的废钢都是足够的。废钢能否按时熔化,与废钢的熔化速率、转炉吹炼时间和废钢厚度有关;建立废钢熔化速率模型和熔化厚度模型,在京唐现有条件下,最多能熔化44mm厚度的废钢,在温度1360℃下,熔池碳含量从4.5%增加到5.0%时,废钢熔化速率增加43%到63mm,在碳含量4.5%下,熔池温度从1350℃增加到1400℃,废钢熔化速率增加60%到70mm。除此之外增加吹炼时间,能进一步增加废钢熔化厚度。但是,与常规转炉相比,脱磷转炉熔化的废钢尺寸还是有限;针对转炉辅料成本问题,利用C#编程语言开发辅料加入量计算模型界面,在现有物质流运行情况下,通过计算模型可知,辅料成本的高低与铁水硅含量、碳含量、温度有很大关系,本文给出了不同情况下的“全三脱”冶炼和常规冶炼辅料加入成本对比结果;当”三脱”比例增加到100%时,对于现有铁水条件和目标钢种条件,“全三脱”冶炼的辅料加入成本与常规冶炼相比,不仅没有增加,反倒降低了。以冶炼低碳钢种,铁水碳含量为4.1%、硅含量为0.1、温度为1330℃为例,与现有状态常规转炉相比,“全三脱”冶炼,平均吨钢辅料成本降低0.13~4.63元。
王媛媛[5](2019)在《智能制造发展的国际比较与中国抉择》文中进行了进一步梳理当前移动互联网、大数据、云计算、人工智能等新一代信息技术蓬勃发展,并加速向制造业渗透,制造业领域将迎来一场智能化革命,进而引发新一轮的工业革命。美欧等发达国家和地区纷纷出台应对新工业革命和智能制造的发展战略。我国也迎来新工业革命和转变经济发展方式的历史交汇期,由此提出以智能制造作为主攻方向,推动产业技术变革和优化升级,进而建设制造强国的发展目标。因此,研究智能制造这一主导新工业革命发展的新型制造模式具有重要意义。本文以智能制造作为研究对象,以马克思技术进步及资本有机构成理论、熊彼特和新熊彼特学派技术创新及演化经济学等理论为研究基础,运用系统分析、实证分析、比较分析以及实地调查等研究方法,对智能制造进行全面而深入的研究。主要研究内容包括:一是,探索智能制造发展演化的机理及其技术-经济范式。对智能制造的内涵、产生动力、生产组织模式创新以及技术-经济范式进行分析;二是,对智能制造发展的关键基础性产业——集成电路、智能传感器、高档数控机床、工业机器人以及软件和信息技术服务业的全球发展态势进行比较分析;三是,对G20国家智能制造发展水平进行实证分析。在投入产出分析方法基础上,建立“制造业智能化指数”衡量智能制造发展水平,并进行国别和分行业的比较分析;四是,对美国、德国、日本智能制造发展的典型模式进行分析、比较,并得出有益的经验借鉴。首先对其智能制造赖以发展的国家创新体系和创新政策演变进行分析,其次对其推动智能制造发展的具体政策措施进行深入研究,再次对这三个国家智能制造的发展模式进行比较,分析异同点,并得出可供我国借鉴的有益经验;五是,分析我国智能制造发展的现状。从顶层设计、标准体系建设、基础产业发展、企业以及地方政府推动等方面分析我国智能制造发展取得的进展和成就,同时剖析了中国智能制造在发展基础、创新能力、推进机制、企业主体引领、政策规划以及人才等方面存在的问题,明确努力的方向;六是,提出我国智能制造发展的创新路径和对策。即要以建设制造强国为目标的智能制造发展导向;建设政府引领、产业界主导、研究机构和大学紧密合作的智能制造创新网络;要涵盖重要战略性新兴产业的智能制造发展领域;以及实施面向不同发展优势和水平的差异化发展战略。总之,发展智能制造是我国实现技术跃升及经济实力赶超的重要契机,应密切关注和研究新工业革命发展趋势以及智能制造技术-经济范式发展演化特征,把握各国智能制造发展的态势、能力水平以及具体的推进战略,同时深入了解我国智能制造发展的优劣势,构建与我国经济社会发展相适应的智能制造发展路径和政策体系,抓住机遇加快发展,早日实现制造强国的目标和国家实力的历史性跨越。
刘欣[6](2019)在《中国物理学院士群体计量研究》文中研究说明有关科技精英的研究是科学技术史和科学社会学交叉研究的议题之一,随着中国近现代科技的发展,中国科技精英的规模逐渐扩大,有关中国科技精英的研究也随之增多,但从学科角度进行科技精英的研究相对偏少;物理学是推动自然科学和现代技术发展的重要力量,在整个自然科学学科体系中占有较高地位,同时与国民经济发展和国防建设密切关联,是20世纪以来对中国影响较大的学科之一;中国物理学院士是物理学精英的代表,探讨中国物理学院士成长路径的问题,不仅有助于丰富对中国物理学院士群体结构和发展趋势的认识,而且有助于为中国科技精英的成长和培养提供相关借鉴;基于此,本文围绕“中国物理学院士的成长路径”这一问题,按照“变量——特征——要素——路径”的研究思路,引入计量分析的研究方法,对中国物理学院士这一群体进行了多角度的计量研究,文章主体由以下四部分组成。第一部分(第一章)以“院士制度”在中国的发展史为线索,通过对1948年国民政府中央研究院和国立北平研究院推选产生中国第一届物理学院士,1955年和1957年遴选出新中国成立后的前两届物理学学部委员、1980年和1991年增补的物理学学部委员、1993年后推选产生的中国科学院物理学院士、1994年后的中国科学院外籍物理学院士和中国工程院物理学院士,及其他国家和国际组织的华裔物理学院士的搜集整理,筛选出319位中国物理学院士,构成本次计量研究的样本来源。第二部分(第二至九章)对中国物理学院士群体进行计量研究。首先,以基本情况、教育经历、归国工作,学科分布、获得国内外重大科技奖励等情况为变量,对中国物理学院士群体的总体特征进行了计量分析;其次,按照物理学的分支交叉学科分类,主要对中国理论物理学、凝聚态物理学、光学、高能物理学、原子核物理学这五个分支学科的院士群体特征分别进行了深入的计量分析,对其他一些分支交叉学科,诸如天体物理学、生物物理学、工程热物理、地球物理学、电子物理学、声学、物理力学和量子信息科技等领域的院士群体的典型特征进行了计量分析,分析内容主要包括不同学科物理学院士的年龄结构、学位结构、性别比例,在各研究领域的分布、发展趋势和师承关系等;再次,在对各分支交叉学科物理学院士的基本情况和研究领域计量分析的基础上,对不同学科间物理学院士的基本情况进行比较研究,对中国物理学院士研究领域和代际演化进行趋势分析。第三部分(第十章)在第二部分计量分析的基础上,总结归纳出中国物理学院士的群体结构特征、研究领域和代际演化的趋势特征。中国物理学院士的群体结构呈现整体老龄化问题严重,但近些年年轻化趋向较为明显,整体学历水平较高,同时本土培养物理学精英的能力增强,女性物理学院士占比较低但他们科技贡献突出,空间结构“集聚性”较强,但近些年这种“集聚性”逐渐被打破等特征;中国物理学院士的研究领域呈现出,物理学科中交叉性较强的研究领域具有极大的发展潜力,应用性较强的研究领域产业化趋势明显,当代物理学的发展与科研实验设施的关系越发紧密等趋势特征;中国物理学院士的代际演化呈现出,新中国成立初期国家需求导向下的相关物理学科迅猛发展,20世纪80年代以来物理学院士研究兴趣与国家政策支持相得益彰,21世纪以来物理学院士个体对从事学科发展的主导作用越来越大等趋势特征。第四部分(第十一章)通过分析中国物理学院士群体的计量特征得出中国物理学院士的成长路径。宏观层面,社会时代发展大背景的影响一直存在,国家发展战略需求导向要素有所减弱,国家科技管理制度的要素影响有所增强,中国传统文化对物理学院士成长潜移默化的影响;中观层面,物理学学科前沿发展需求的导向要素显着增强,空间结构“集聚性”的影响逐渐在减弱,师承关系的影响主要体现于学科延承方面;微观层面,性别差异对物理学家社会分层的影响很弱,年龄要素对物理学院士成长具有一定的影响,个人研究兴趣对物理学院士的成长影响增强;可见中国物理学院士受社会时代背景、中国传统文化的影响一直存在,受国家发展战略需求的导向影响有所减弱,而受物理学学科前沿发展和物理学家个人研究兴趣的导向逐渐增强,进而得出中国物理学院士的社会分层总体符合科学“普遍主义”原则的结论。最后,在中国物理学院士的群体发展展望中,提出须优化中国物理学院士年龄结构和培养跨学科物理科技人才,辩证看待中国物理学院士空间结构的“集聚性”和师承效应,发挥中国物理学院士的研究优势弥补研究领域的不足,增加科研经费投入和完善科技奖励机制,不断加强国家对物理学的支持力度等建议,以促进中国物理学院士群体的良性发展和推动我国从物理学大国发展为物理学强国。
孙晓霞[7](2018)在《2018年全国“两会”材料产业链之声》文中认为2018年3月,备受关注的十三届全国人大一次会议、全国政协十三届一次会议在北京召开。在这次意义非常的全国"两会"上,来自各行各业的代表、委员积极建言献策。本刊编辑部精心梳理了代表、委员的议案和提案,以及代表、委员在全国"两会"期间的访谈观点,整理出材料领域、与材料息息相关的制造业领域的相关观点,希望可以让业界人士洞察材料产业和下游产业发展的新动向。
宋立秋[8](2012)在《国内外超细晶粒钢研究及发展趋势》文中提出概述了国内外超细晶粒钢的研究内容和发展趋势。介绍了400 MPa级碳素钢、800 MPa级高强度低合金钢和1500 MPa级长寿命低合金钢的最新研究成果和发展动态。
轧制技术及连轧自动化国家重点实验室[9](2012)在《自主创新 助推钢铁行业技术进步》文中进行了进一步梳理东北大学轧制技术及连轧自动化国家重点实验室(The State Key Laboratory of Rolling and Automation,简称RAL),其前身是建于1954年的东北工学院轧钢实验室,1989年得到世界银行的支持,1991年获批立项建设国家重点实验室,1995年通过国家验收正式开放运行,成为我国轧制技术及其自动化领域唯一的国家重点实验室。今年是轧制技术及连轧自动化国家重点实验室(东北大学)获批立项建设二十周年。二十年来,轧制技术及连轧自动化国家重点实验室秉承"开放、流动、联合、竞争"的运行机制,以国民经济需求为导向,面向钢铁材料及有色金属材料轧制技术领域,置身前沿,躬身实践;面向国民经济主战场,一步一个脚印,扎扎实实,取得了一系列具有自主知识产权的科研创新成果,走出了一条具有鲜明特色的国家重点实验室建设发展之路。本报道记录了轧制技术及连轧自动化国家重点实验室二十年来的创新和发展之路。
黄忠东[10](2011)在《外加微米级ZrC颗粒强韧化低碳微合金钢的研究》文中指出钢铁是创造现代文明的基础材料,是人类进步的重要物质基础之一。由于其高强度、通用性和耐用性仍然是当今世界上最主要的材料,是工业发展的基础。提高钢铁材料的强度、韧性、塑性、加工性能以及使用寿命是21世纪钢铁工业的主要奋斗目标。对现有传统钢铁材料采用特殊的工艺过程,可以大幅度提高其性能,有效地提高资源的利用率和回收率。目前,工业上主要是采用纯净化和微合金化以及控轧控冷工艺相结合等技术手段,使钢铁材料的性能得到较大幅度的提升。低碳微合金钢是在低碳钢或超低碳钢中添加一定的铌、钒、钛等微合金元素,使它们与碳、氮结合形成碳化物、氮化物以及碳氮化合物,作为第二相在钢中沉淀析出发挥作用,并与控轧控冷工艺相结合,来实现其高强度、高韧性,从而使钢的综合性能得以提高。它是近年来发展最迅速、应用较广泛、最富有活力的钢材品种之一。如何改善其组织提高其性能,是其面临的关键问题。在低碳微合金钢内部形成的细小第二相粒子几乎是在固相线以下奥氏体中析出,所以对奥氏体本身的形核起不到核心作用,从而对细化原奥氏体晶粒没有作用,而且生产过程控制要求较高,成本偏高。为了克服这些弊端,本论文提出从外部往钢液中添加第二相粒子以强韧化钢铁材料的新工艺。外加第二相颗粒对钢的细化包括凝固结晶时的形核细化和后期轧制过程中的再结晶细化的全过程,与内生析出第二相粒子相比,该方法克服了内生颗粒法在生成颗粒的数量及其大小的不确定性和难以把握性,更具有可控性,而且对钢的纯净度无过高要求,可以方便地适用于工业规模的钢材生产。本文以一种低碳微合金钢为基体,其主要化学成分(质量分数,%)为0.054C,0.118V,0.070Nb,0.202Ti,0.018Si,0.346Mn,0.018P0.010S。真空感应熔炼过程中,采用特殊工艺方法从外部向钢液中加入1.3μm的ZrC颗粒,将得到的铸锭加热奥氏体化后控轧控冷。为了考察添加ZrC颗粒后对试验钢组织和力学性能的影响,本论文对添加ZrC颗粒前后的试验钢进行了对比研究。通过拉伸试验、冲击试验、硬度试验考察了试验钢的各种力学性能的变化情况;通过金相显微镜、扫描电子显微镜(SEM)、透射电镜(TEM)等分析手段深入系统地研究了试验钢的组织结构、第二相粒子的分布及其形貌;通过化学相分析确定了析出相的化学组成和数量,利用X射线小角度散射法,确定了析出相的粒度分布,初步探讨了试验钢的强韧化机理;最后也考察了试验钢热处理后的组织和力学性能的变化。研究结果表明,添加ZrC颗粒的试验钢的晶粒都得到了细化,外加ZrC颗粒具有明显的细化晶粒的效果。利用单因素试验,对加入ZrC颗粒的量进行了优化,确定了ZrC颗粒的体积含量为1.1%时的试验钢可以获得最小的晶粒和最佳的综合力学性能,此时晶粒尺寸d为5.5μm,屈服强度、抗拉强度、维氏硬度、伸长率65、冲击韧度αK分别为517.5MPa、635MPa、214.0、20.66%和215.0J/cm2。添加ZrC颗粒后,试验钢的组织仍然是铁素体加极少量珠光体,无贝氏体和板条马氏体。在铸态试验钢中,ZrC颗粒分布不均匀,偏聚于晶粒的晶界处,会对铸态试验钢中晶粒的长大起抑制作用而产生细化作用。轧制时奥氏体化的高温及大塑性变形量,促进了钢中ZrC颗粒分布均匀,ZrC颗粒进入到晶粒内部,在轧制变形位错绕过时逐渐成为形变核心和再结晶核心,显着增大变形区及动态再结晶区的形核率,促进晶粒细化。试验钢的拉伸断口和冲击断口均为典型韧性断裂,其中添加ZrC颗粒的试验钢在韧窝内有时可以看到外加ZrC粒子。通过化学相分析和X射线小角度散射法对ZrC颗粒的体积含量为1.1%的试验钢进行了测试,结果表明钢中析出相主要为析出碳化物MC,其结构式为(Nb0.121Ti0.528Zr0.293V0.058)C,属面心立方晶系,钢中未检测到1-10nm的MC析出相,10-18nm的析出相占2.3%,18-36nm的析出相占2.8%,36-96nm的析出相占13.5%,96-430nm的析出相占65.1%。经计算试验钢的各种强化方式的数值分别为:细晶强化值为234.6MPa、固溶强化值28.7MPa、沉淀强化值61.0MPa、位错强化值141.5MPa。外加ZrC颗粒的作用主要表现在细化晶粒和提高位错密度两个方面,而固溶强化和沉淀强化的作用则并不明显。经过热处理后,单因素优化的结果仍然是ZrC颗粒的体积含量为1.1%的试验钢,但与未经热处理的试验钢相比,综合力学性能并没有得到显着提高。同时,试验钢的组织结构并未发生变化。
二、新一代钢铁材料的重大基础研究(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、新一代钢铁材料的重大基础研究(论文提纲范文)
(2)外加改性纳米粒子技术诱导钢中铁素体形核的基础研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 高强度钢铁材料 |
2.1.1 高强度钢的微观组织特点 |
2.1.2 钢的微观组织特征 |
2.1.3 钢的微观组织细化 |
2.1.4 微观组织细化发展现状 |
2.1.5 影响针状铁素体的形成因素 |
2.2 氧化物冶金技术 |
2.2.1 氧化物冶金技术的提出 |
2.2.2 氧化物冶金的关键技术 |
2.2.3 氧化物冶金技术研究方式及方向 |
2.3 炼钢用纳米粒子表面处理方法 |
2.3.1 硬模板法 |
2.3.2 软模板法 |
2.3.3 无模板法 |
2.4 形变诱导铁素体相变技术 |
2.4.1 形变速率对形变诱导铁素体相变的影响 |
2.4.2 变形量对形变诱导铁素体相变的影响 |
2.4.3 形变温度对形变诱导铁素体相变的影响 |
2.5 弥散强化合金及其形变强化的研究进展 |
2.5.1 弥散强化合金的研究进展 |
2.5.2 弥散强化钢的形变强化研究进展 |
2.6 课题背景及研究内容 |
2.6.1 课题背景及意义 |
2.6.2 研究内容及框架 |
3 炼钢用核壳结构纳米粒子的制备及表征 |
3.1 引言 |
3.2 实验部分 |
3.2.1 实验仪器 |
3.2.2 实验试剂及材料 |
3.2.3 实验方法 |
3.3 结果与讨论 |
3.3.1 纳米粒子特性 |
3.3.2 纳米粒子表面处理过程及其钢液中的特性 |
3.4 本章小结 |
4 钢中外加MgO@PDA纳米粒子的高温实验 |
4.1 引言 |
4.2 实验部分 |
4.2.1 实验步骤和实验材料 |
4.2.2 检测方法和仪器设备 |
4.3 实验结果与讨论 |
4.3.1 夹杂物与微观组织的特性分析 |
4.3.2 断面结果分析 |
4.4 本章小结 |
5 钢中外加第二相纳米粒子的细微化研究及机理分析 |
5.1 引言 |
5.2 实验部分 |
5.2.1 实验药品 |
5.2.2 实验步骤 |
5.3 实验结果 |
5.3.1 夹杂物特性分析 |
5.3.2 纳米粒子收得率分析和钢液成分变化理论计算 |
5.3.3 夹杂物弥散化和组织细化研究 |
5.4 实验机理分析 |
5.4.1 表面处理过程及粒子在钢液中的物理性质 |
5.4.2 纳米粒子钢液中收得率和对夹杂物弥散性的影响 |
5.4.3 铁素体形核理论计算 |
5.5 本章小结 |
6 冷却速率对纳米钢中微观组织演变的影响研究 |
6.1 引言 |
6.2 实验部分 |
6.2.1 实验原料和实验步骤 |
6.2.2 原位观察实验 |
6.3 实验结果 |
6.3.1 夹杂物特性分析 |
6.3.2 微观组织特性分析 |
6.3.3 原位观察实验 |
6.3.4 针状铁素体的形核动力学 |
6.4 实验机理分析 |
6.4.1 夹杂物形核的热力学分析 |
6.4.2 不同冷速下夹杂物与微观组织特性的研究 |
6.4.3 针状铁素体形核理论分析 |
6.5 本章小结 |
7 非调质钢中的氧化物冶金与形变强化协同调控技术 |
7.1 引言 |
7.2 实验部分 |
7.2.1 实验原料和实验方法 |
7.2.2 应力应变曲线测定 |
7.3 实验结果 |
7.3.1 夹杂物特性分析 |
7.3.2 微观组织特性分析 |
7.3.3 热压缩形变实验 |
7.3.4 应力应变曲线分析 |
7.4 实验机理分析 |
7.4.1 夹杂物的特性和微观组织的演变 |
7.4.2 双强化技术作用机理 |
7.5 本章小结 |
8 结论与创新点 |
8.1 结论 |
8.2 创新点 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(3)战后科技革命推动日本产业升级研究 ——基于创新体系的视角(论文提纲范文)
答辩决议书 |
摘要 |
abstract |
第1章 绪论 |
1.1 选题背景及研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 文献综述 |
1.2.1 国内研究现状 |
1.2.2 国外研究现状 |
1.2.3 国内外研究述评 |
1.3 研究框架与研究方法 |
1.3.1 研究框架 |
1.3.2 研究方法 |
1.4 研究中的创新与不足 |
第2章 科技革命推动产业升级的一般分析 |
2.1 科技革命的概念与研究范围界定 |
2.1.1 科技革命的概念 |
2.1.2 战后科技革命研究范围的界定 |
2.2 科技革命推动下产业升级的内涵及研究范围界定 |
2.2.1 科技革命推动下产业升级的内涵 |
2.2.2 科技革命推动产业升级的研究范围界定 |
2.3 科技革命推动产业升级的理论基础 |
2.3.1 熊彼特创新理论 |
2.3.2 技术经济范式理论 |
2.3.3 产业技术范式理论 |
2.4 本章小结 |
第3章 科技革命推动产业升级:基于创新体系视角的分析框架 |
3.1 科技革命推动产业升级的机理 |
3.1.1 科技革命推动产业升级的经济本质:技术经济范式转换 |
3.1.2 科技革命推动产业升级的传导机制:“催新”与“改旧” |
3.2 创新体系相关理论 |
3.2.1 国家创新体系理论 |
3.2.2 部门创新体系理论 |
3.3 以创新体系为切入点的分析视角 |
3.3.1 国家创新体系与技术经济范式匹配性分析视角 |
3.3.2 部门创新体系与产业技术范式匹配性分析视角 |
3.4 本章小结 |
第4章 战后科技革命推动日本产业升级的历程与背景 |
4.1 科技革命推动日本产业升级的历程 |
4.1.1 战前科技革命成果推动下日本产业的“重化型”化(20世纪50-60年代) |
4.1.2 战后科技革命推动下日本产业的“轻薄短小”化(20世纪70-80年代) |
4.1.3 战后科技革命推动下日本产业的“信息”化(20世纪90年代后) |
4.2 战后科技革命推动日本产业升级的背景 |
4.2.1 重化型产业结构的局限性日渐凸显 |
4.2.2 世界性科技革命的爆发为日本提供了机遇 |
4.2.3 日本经济的高速增长奠定了经济基础 |
4.2.4 日本的“引进消化吸收再创新”战略奠定了技术基础 |
4.3 本章小结 |
第5章 战后科技革命推动日本产业升级:基于国家创新体系的分析 |
5.1 技术经济范式转换的载体:日本国家创新体系 |
5.2 科技革命推动日本产业升级中政府支持创新的行为 |
5.2.1 传递最新科技情报并辅助企业引进技术 |
5.2.2 适时调整科技发展战略和产业结构发展方向 |
5.2.3 制定激励企业研发的经济政策和专利保护制度 |
5.2.4 采取措施加速新技术产业化的进程 |
5.2.5 改革教育体制并强化人才引进制度 |
5.3 科技革命推动日本产业升级中企业的创新行为 |
5.3.1 注重提升自主创新能力 |
5.3.2 遵循技术创新的“现场优先主义”原则 |
5.3.3 实行考虑市场因素的“商品研制、推销一贯制” |
5.3.4 将资金集中投向开发研究和创新链的中下游环节 |
5.3.5 重视对在职人员的科技教育和技术培训 |
5.4 科技革命推动日本产业升级中大学和科研机构的创新行为 |
5.4.1 从事与产业技术密切相关的基础和应用研究 |
5.4.2 重视通识教育和“强固山脚”教育 |
5.4.3 培养了大量的理工类高科技人才 |
5.5 科技革命推动日本产业升级中的创新主体联盟 |
5.5.1 产学官联合攻关尖端技术 |
5.5.2 建立能够促进科技成果转化的中介机构 |
5.5.3 联合培养和引进优秀人才 |
5.6 日本国家创新体系与技术经济范式的匹配性评析 |
5.6.1 日本国家创新体系与微电子技术经济范式相匹配 |
5.6.2 “追赶型”国家创新体系与“应用开发型”技术经济范式相匹配 |
5.7 本章小结 |
第6章 战后科技革命催生日本主要新兴产业:基于部门创新体系的分析 |
6.1 新兴产业技术范式的形成与日本部门创新体系 |
6.2 微电子技术催生下日本半导体产业的兴起和发展 |
6.2.1 微电子技术产业化中政府支持创新的行为 |
6.2.2 微电子技术产业化中企业的创新行为 |
6.2.3 微电子技术产业化中科研机构的创新行为 |
6.2.4 微电子技术产业化中的创新主体联盟 |
6.2.5 微电子技术产业化中的需求因素 |
6.3 计算机技术催生下日本计算机产业的兴起与发展 |
6.3.1 计算机技术产业化中政府支持创新的行为 |
6.3.2 计算机技术产业化中企业的创新行为 |
6.3.3 计算机技术产业化中的创新主体联盟 |
6.3.4 计算机技术产业化中的需求因素 |
6.4 日本部门创新体系与新兴产业技术范式形成的匹配性评析 |
6.4.1 部门创新体系与半导体产业技术范式形成相匹配 |
6.4.2 部门创新体系与计算机产业技术范式形成相匹配 |
6.4.3 部门创新体系与新兴产业技术范式形成相匹配 |
6.5 本章小结 |
第7章 战后科技革命改造日本主要传统产业:基于部门创新体系的分析 |
7.1 科技革命改造传统产业的本质:传统产业技术范式变革 |
7.2 微电子技术改造下日本工业机器自动化的发展 |
7.2.1 工业机器自动化中政府支持创新的行为 |
7.2.2 工业机器自动化中企业的创新行为 |
7.2.3 工业机器自动化中的创新主体联盟 |
7.2.4 工业机器自动化中的需求因素 |
7.3 微电子技术改造下日本汽车电子化的发展 |
7.3.1 汽车电子化中政府支持创新的行为 |
7.3.2 汽车电子化中企业的创新行为 |
7.3.3 汽车电子化中的创新主体联盟 |
7.3.4 汽车电子化中的需求因素 |
7.4 日本部门创新体系与传统产业技术范式变革的匹配性评析 |
7.4.1 部门创新体系与工业机器产业技术范式变革相匹配 |
7.4.2 部门创新体系与汽车产业技术范式变革相匹配 |
7.4.3 部门创新体系与传统产业技术范式变革相匹配 |
7.5 本章小结 |
第8章 创新体系视角下战后科技革命推动日本产业升级的经验与教训 |
8.1 战后科技革命推动日本产业升级的经验 |
8.1.1 构建了与微电子技术经济范式相匹配的国家创新体系 |
8.1.2 重视创新体系的层级性和差异性建设 |
8.1.3 加速推进新兴产业技术范式的形成 |
8.1.4 借力科技革命的“双重性质”推动新旧产业协调发展 |
8.2 战后科技革命推动日本产业升级的教训 |
8.2.1 创新体系的基础研究能力不足 |
8.2.2 创新体系不利于颠覆性技术创新的产生 |
8.2.3 政府主导下的大型研发项目模式存在定向失误的弊端 |
8.3 本章小结 |
第9章 创新体系视角下战后科技革命推动日本产业升级对我国的启示 |
9.1 新一轮科技革命给我国产业升级带来的机遇 |
9.1.1 为我国产业升级提供“机会窗口” |
9.1.2 为我国新兴产业“追跑”“齐跑”与“领跑”的并行发展提供机遇 |
9.1.3 为我国传统制造业的高质量发展创造了机会 |
9.2 构建与新一轮科技革命推动产业升级相匹配的创新体系 |
9.2.1 构建国家创新生态体系 |
9.2.2 重视部门创新体系的“产业间差异性” |
9.2.3 形成与新兴产业技术范式相匹配的部门创新体系 |
9.2.4 建设能够促进传统产业技术范式演化升级的部门创新体系 |
9.3 本章小结 |
结论 |
参考文献 |
攻读博士学位期间的科研成果 |
致谢 |
(4)首钢京唐“全三脱”炼钢过程铁素物质流调控的应用基础研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 洁净钢生产流程概述 |
2.1.1 常见的转炉炼钢流程 |
2.1.2 传统的洁净钢冶炼工艺 |
2.1.3 洁净钢冶炼新工艺 |
2.2 “全三脱”炼钢过程的发展及应用现状 |
2.2.1“全三脱”工艺及其特点 |
2.2.2 “全三脱”炼钢过程的工业应用现状 |
2.3 新一代大型钢厂动态精准设计和集成理论 |
2.3.1 新一代大型钢厂特征 |
2.3.2 钢铁制造流程的解析与集成 |
2.3.3 “全三脱”炼钢过程与洁净钢生产平台 |
2.4 炼钢成本控制方面的研究现状 |
2.4.1 炼钢成本控制方面计算机模型的研究 |
2.4.2 转炉炼钢成本控制模型涉及的算法及计算机理论 |
2.5 转炉废钢熔化研究现状 |
2.5.1 理论研究 |
2.5.2 实验研究 |
2.5.3 数值模拟研究 |
2.5.4 工业实验研究 |
2.6 选题背景和研究内容 |
2.6.1 选题背景 |
2.6.2 研究技术路线和内容 |
3 首钢京唐“全三脱”炼钢过程物质流运行概况 |
3.1 工艺流程及设备概况 |
3.2 “全三脱”工艺流程的应用情况 |
3.2.1 “三脱”比例 |
3.2.2 成本控制 |
3.2.3 成分控制 |
3.2.4 时间节奏控制 |
3.2.5 温度控制 |
3.3 物质流运行现状初步分析 |
3.4 小结 |
4 物质流运行时间和温度解析研究 |
4.1 钢铁制造流程中的基本参数 |
4.2 主体工序 |
4.2.1 时间解析 |
4.2.2 温度解析 |
4.3 物质流运行甘特图分析 |
4.4 空炉时间对转炉热量和铁水温降的影响规律研究 |
4.4.1 建立传热模型 |
4.4.2 计算方法及模型验证 |
4.4.3 计算结果与分析 |
4.5 工序与工序间物质流运行 |
4.5.1 时间解析 |
4.5.2 温度解析 |
4.6 小结 |
5 物质流运行集成与优化仿真研究 |
5.1 动态精准设计和集成理论 |
5.2 设计生产能力与实际产量 |
5.3 仿真模型的建立 |
5.3.1 Plant Simulation仿真软件及仿真语言简介 |
5.3.2 问题描述 |
5.3.3 仿真模型构建 |
5.3.4 参数设置 |
5.4 模型的运行与验证 |
5.4.1 模型的研究对象和运行结果 |
5.4.2 模型验证 |
5.5 不同比例“三脱”对物质流运行的影响 |
5.5.1 单体工序 |
5.5.2 工序与工序间 |
5.5.3 流程重构 |
5.5.4 炼钢-连铸全流程 |
5.6 小结 |
6 “全三脱”工艺条件下转炉废钢熔化影响规律研究 |
6.1 废钢熔化现状 |
6.2 废钢熔化与热量 |
6.2.1 脱磷炉物料平衡计算 |
6.2.2 脱磷炉热平衡计算 |
6.2.3 废钢比与转炉热量 |
6.3 脱磷转炉废钢熔化模型研究 |
6.3.1 脱磷转炉废钢熔化的特点 |
6.3.2 脱磷转炉废钢熔化数学模型建立 |
6.3.3 模型计算与验证 |
6.3.4 脱磷转炉废钢熔化模型的应用与结果分析 |
6.4 废钢熔化分析 |
6.5 小结 |
7 “全三脱”工艺条件下转炉冶炼辅料加入成本影响规律研究 |
7.1 转炉生产工艺现状 |
7.1.1 入炉铁水 |
7.1.2 终点控制 |
7.1.3 辅料加入 |
7.2 模型构建的理论基础 |
7.2.1 渣量计算模型 |
7.2.2 白云石加入量计算模型 |
7.2.3 铁矿石及加热剂加入量计算模型 |
7.2.4 石灰加入量计算模型 |
7.2.5 辅料成本计算模型 |
7.3 转炉冶炼成本控制模型及框架 |
7.3.1 模型界面 |
7.3.2 模型参数设置 |
7.3.3 模型计算结果 |
7.4 模型计算结果分析 |
7.5 小结 |
8 首钢京唐“全三脱”炼钢过程物质流运行评价及优化对策探究 |
8.1 “全三脱”炼钢过程物质流运行评价 |
8.2 物质流运行优化对策探究 |
9 结论和展望 |
9.1 结论 |
9.2 展望 |
10 附录 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(5)智能制造发展的国际比较与中国抉择(论文提纲范文)
中文摘要 |
Abstract |
绪论 |
第一节 研究背景、问题及意义 |
一、研究背景 |
二、问题的提出 |
三、研究意义 |
第二节 智能制造研究综述 |
一、国外相关研究 |
二、国内相关研究 |
三、文献评述 |
第三节 研究内容、思路及方法 |
一、研究内容 |
二、研究思路 |
三、研究方法 |
第四节 主要创新点 |
第一章 研究智能制造发展的理论基础 |
第一节 马克思技术进步理论及资本有机构成理论 |
一、技术进步和机器大工业生产理论 |
二、资本有机构成理论 |
第二节 西方经济学相关理论 |
一、熊彼特创新及经济周期理论 |
二、弗里曼工业创新及演化经济学理论 |
三、佩雷斯技术-经济范式及技术革命周期演化理论 |
四、其他新熊彼特学派学者的创新和演化经济学理论 |
第二章 智能制造发展演化的机理及其技术-经济范式 |
第一节 智能制造的定义及内涵界定 |
一、有关智能制造的定义概述 |
二、本文对于智能制造概念的界定 |
第二节 智能制造产生的动力分析 |
一、技术进步是智能制造产生的根本动力 |
二、经济危机是智能制造产生的催化剂 |
第三节 智能制造的生产组织模式 |
一、制造业生产组织模式变迁 |
二、智能制造的生产组织模式创新 |
第四节 智能制造的技术-经济范式体系 |
一、范式及技术-经济范式概念界定 |
二、技术革命的划分及其技术-经济范式变迁分析 |
三、第三次工业革命下的智能制造技术-经济范式 |
第三章 智能制造关键基础性产业全球发展态势比较分析 |
第一节 集成电路和传感器产业 |
第二节 高档数控机床产业 |
第三节 工业机器人产业 |
第四节 软件和信息技术服务业 |
第四章 G20国家智能制造发展水平实证分析 |
第一节 智能制造发展水平的分析思路及方法 |
一、智能制造发展水平的分析思路 |
二、投入产出分析方法及直接消耗系数 |
三、制造业智能化指数的概念及其对智能制造发展水平的表征 |
第二节 相关产业的界定 |
一、信息通信技术产业的界定 |
二、机械自动化产业的界定 |
三、制造业的行业界定 |
第三节 制造业智能化指数的计算及数据来源 |
一、制造业智能化指数的计算方法 |
二、研究的国别及数据来源 |
第四节 实证结果分析 |
一、各国智能制造总体发展水平比较分析 |
二、分行业智能制造发展水平比较分析 |
三、中国智能制造发展水平分析 |
第五章 典型国家智能制造发展模式比较与经验借鉴 |
第一节 美国国家创新体系及先进制造业发展战略 |
一、美国国家创新体系和创新政策演变分析 |
二、美国先进制造业及工业互联网发展战略 |
第二节 德国国家创新体系及工业4.0战略 |
一、德国国家创新体系和创新政策演变分析 |
二、德国高技术创新战略及工业4.0发展战略 |
第三节 日本国家创新体系及新机器人战略 |
一、日本国家创新体系和创新政策演变分析 |
二、日本新机器人战略及互联工业倡议 |
第四节 美、德、日智能制造发展模式比较与启示 |
一、美、德、日智能制造发展模式的相同点 |
二、美、德、日智能制造发展模式的不同点 |
三、几点启示 |
第六章 中国智能制造发展现状分析 |
第一节 中国智能制造发展情况概述 |
一、智能制造发展的顶层设计逐步完善 |
二、智能制造标准体系建设全面展开 |
三、智能制造关键基础性产业持续发展 |
四、企业积极参与推动智能制造发展 |
五、各地方政府主动对接智能制造发展 |
第二节 中国智能制造发展存在的问题分析 |
一、智能制造发展基础薄弱,自主创新意识和能力不强 |
二、官产学研的协同创新机制尚未建立起来 |
三、智能制造推进平台缺失 |
四、企业的主体引领作用不突出 |
五、政策规划相对宽泛,没有突出自身特点和优势 |
六、相关教育和人才缺失 |
第七章 推进中国智能制造发展的创新路径 |
第一节 推进中国智能制造发展的基本原则 |
第二节 推进中国智能制造发展的路径分析 |
一、发展目标:以建设制造强国为目标的智能制造发展导向 |
二、创新主导力量:政府引领、产业界主导、研究机构和大学紧密合作的智能制造创新网络 |
三、涵盖领域:涵盖重要战略性新兴产业的智能制造发展领域 |
四、重点环节和思路:面向不同发展优势和水平的差异化发展战略 |
第三节 推进中国智能制造发展的对策建议 |
一、深化智能制造相关基础理论体系的研究 |
二、加强智能制造关键技术和装备的攻关 |
三、健全智能制造发展的体制机制 |
四、完善智能制造发展的政策保障 |
五、强化智能制造相关人才的教育和培训 |
第八章 结论 |
第一节 本文的主要结论 |
第二节 有待进一步研究的问题 |
参考文献 |
攻读学位期间承担的科研任务与主要成果 |
致谢 |
个人简历 |
(6)中国物理学院士群体计量研究(论文提纲范文)
中文摘要 |
ABSTRACT |
绪论 |
一、文献综述 |
二、论文选题和研究内容 |
三、研究的创新与不足 |
第一章 中国物理学院士的产生与本土化 |
1.1 民国时期中国物理学院士的产生 |
1.1.1 国民政府中央研究院推选产生中国第一届物理学院士 |
1.1.2 国立北平研究院推选出与“院士”资格相当的物理学会员 |
1.2 当代中国物理学院士的本土化 |
1.2.1 中国科学院推选产生物理学学部委员 |
1.2.2 中国科学院物理学院士与中国工程院物理学院士的发展 |
1.3 其他国家和国际组织的华裔物理学院士 |
1.4 中国物理学院士名单与增选趋势分析 |
1.4.1 中国物理学院士的名单汇总 |
1.4.2 中国本土物理学院士总体增选趋势 |
第二章 中国物理学院士总体特征的计量分析 |
2.1 中国物理学院士基本情况的计量分析 |
2.1.1 女性物理学院士占比较低 |
2.1.2 院士整体老龄化问题严重 |
2.1.3 出生地域集中于东南沿海地区 |
2.2 中国物理学院士教育经历的计量分析 |
2.2.1 学士学位结构 |
2.2.2 硕士学位结构 |
2.2.3 博士学位结构 |
2.3 中国物理学院士归国工作情况的计量分析 |
2.3.1 留学物理学院士的归国年代趋势 |
2.3.2 国内工作单位的“集聚性”较强 |
2.3.3 物理学院士的国外工作单位 |
2.4 中国物理学院士从事物理学分支交叉学科的计量分析 |
2.4.1 物理学院士从事分支交叉学科的归类统计 |
2.4.2 物理学院士获得国际科技奖励的计量分析 |
2.4.3 物理学院士获得国内科技奖励的计量分析 |
第三章 中国理论物理学院士群体的计量分析 |
3.1 中国理论物理学院士基本情况的计量分析 |
3.1.1 存在老龄化问题,当选年龄集中于“51-60 岁” |
3.1.2 博士占比52.83%,地方高校理论物理教育水平有所提高 |
3.2 中国理论物理学院士研究领域的计量分析 |
3.2.1 主要分布于凝聚态理论和纯理论物理等领域 |
3.2.2 20 世纪后半叶当选的理论物理学院士内师承关系显着 |
3.3 中国理论物理学院士的发展趋势分析 |
3.3.1 理论物理学院士的增选总体呈上升趋势 |
3.3.2 理论物理学院士研究领域的发展趋势 |
3.4 小结 |
第四章 中国凝聚态物理学院士群体的计量分析 |
4.1 中国凝聚态物理学院士基本情况的计量分析 |
4.1.1 存在老龄化问题,当选年龄集中于“51—60 岁” |
4.1.2 博士占比57.83%,国外博士学位占比将近80% |
4.1.3 女性物理学院士在凝聚态物理领域崭露头角 |
4.2 中国凝聚态物理学院士研究领域的计量分析 |
4.2.1 主要分布于半导体物理学、晶体学和超导物理学等领域 |
4.2.2 凝聚态物理学的一些传统研究领域内师承关系显着 |
4.2.3 凝聚态物理学院士集聚于若干研究中心 |
4.3 中国凝聚态物理学院士的发展趋势分析 |
4.3.1 凝聚态物理学院士的增选总体呈上升趋势 |
4.3.2 凝聚态物理学院士研究领域的发展趋势 |
4.4 小结 |
第五章 中国光学院士群体的计量分析 |
5.1 中国光学院士基本情况的计量分析 |
5.1.1 存在老龄化问题,当选年龄集中于“61—70 岁” |
5.1.2 博士占比54.84%,本土培养的光学博士逐渐增多 |
5.2 中国光学院士研究领域的计量分析 |
5.2.1 研究领域集中分布于应用物理学和激光物理学 |
5.2.2 光学院士工作单位的“集聚性”较强 |
5.3 光学院士的发展趋势分析 |
5.3.1 光学院士的增选总体呈上升趋势 |
5.3.2 光学院士研究领域的发展趋势 |
5.4 小结 |
第六章 中国高能物理学院士群体的计量分析 |
6.1 中国高能物理学院士基本情况的计量分析 |
6.1.1 老龄化问题严重,当选年龄集中于“51—60 岁” |
6.1.2 博士占比53.85%,国外博士学位占比超过85% |
6.2 中国高能物理学院士研究领域的计量分析 |
6.2.1 高能物理实验与基本粒子物理学分布较均衡 |
6.2.2 高能物理学院士的工作单位集聚性与分散性并存 |
6.3 中国高能物理学院士的发展趋势分析 |
6.3.1 高能物理学院士的增选总体呈平稳趋势 |
6.3.2 高能物理学院士研究领域的发展趋势 |
6.4 小结 |
第七章 中国原子核物理学院士群体的计量分析 |
7.1 中国原子核物理学学院士基本情况的计量分析 |
7.1.1 老龄化问题严重,80 岁以下院士仅有3 人 |
7.1.2 博士占比48.84%,国外博士学位占比超过95% |
7.1.3 女性院士在原子核物理学领域的杰出贡献 |
7.2 中国原子核物理学院士研究领域的计量分析 |
7.2.1 原子核物理学院士在各研究领域的分布情况 |
7.2.2 参与“两弹”研制的院士内部师承关系显着 |
7.3 中国原子核物理学院士的发展趋势分析 |
7.3.1 原子核物理学院士的增选总体呈下降趋势 |
7.3.2 原子核物理学院士研究领域的发展趋势 |
7.4 小结 |
第八章 其他物理学分支和部分交叉学科院士群体的计量分析 |
8.1 中国天体物理学院士群体的计量分析 |
8.1.1 天体物理学院士本土培养特征明显 |
8.1.2 天体物理学院士的增选总体呈平稳上升趋势 |
8.1.3 天体物理学院士研究领域的发展趋势 |
8.2 中国生物物理学院士群体的计量分析 |
8.2.1 群体年龄较小,当选年龄集中于“41—50 岁” |
8.2.2 生物物理学院士研究领域的发展趋势 |
8.3 中国工程热物理院士群体的计量分析 |
8.3.1 工程热物理院士内部师承关系十分显着 |
8.3.2 工程热物理院士研究领域的发展趋势 |
8.4 中国地球物理学院士群体的计量分析 |
8.4.1 主要分布于固体地球物理学和空间物理学研究领域 |
8.4.2 地球物理学院士研究领域的发展趋势 |
8.5 部分分支交叉学科院士群体的计量分析 |
8.5.1 电子物理学和声学院士的增选呈下降趋势 |
8.5.2 中国物理力学由应用走向理论 |
8.5.3 中国量子信息科技呈迅速崛起之势 |
第九章 中国物理学院士计量分析的比较研究和趋势分析 |
9.1 各分支交叉学科间物理学院士基本情况的比较研究 |
9.1.1 一些新兴研究领域物理学院士年轻化趋势明显 |
9.1.2 21世纪以来本土培养的物理学院士占比一半以上 |
9.1.3 女性物理学院士在实验物理领域分布较多 |
9.2 中国物理学院士研究领域的发展趋势分析 |
9.2.1 各分支交叉学科内的横向发展趋势分析 |
9.2.2 各分支交叉学科的纵向年代发展趋势分析 |
9.3 中国物理学院士代际演化的趋势分析 |
9.3.1 第一代物理学院士初步完成了中国物理学的建制 |
9.3.2 第二代物理学院士完成了中国物理学主要分支学科的奠基 |
9.3.3 第三代物理学院士在国防科技和物理学科拓展中有着突出贡献 |
9.3.4 第四代物理学院士在推进物理学深入发展方面贡献较大 |
9.3.5 新一代物理学院士科技成果的国际影响力显着增强 |
第十章 中国物理学院士的群体结构特征和发展趋势特征 |
10.1 中国物理学院士的群体结构特征 |
10.1.1 整体老龄化问题严重,但年轻化趋向较为明显 |
10.1.2 整体学历水平较高,本土培养物理学精英的能力增强 |
10.1.3 女性物理学院士占比较低,但科技贡献突出 |
10.1.4 空间结构“集聚性”较强,但近些年“集聚性”逐渐被打破 |
10.2 中国物理学院士研究领域发展的趋势特征 |
10.2.1 物理学科中交叉性较强的研究领域具有极大的发展潜力 |
10.2.2 物理学科中应用性较强的研究领域产业化趋势明显 |
10.2.3 当代物理学的发展与科研实验设施的关系越发紧密 |
10.3 中国物理学院士代际演化的趋势特征 |
10.3.1 新中国成立初期国家需求导向下的相关物理学科迅猛发展 |
10.3.2 20世纪80 年代以来院士研究兴趣与国家支持政策相得益彰 |
10.3.3 21世纪以来院士个体对学科发展的主导作用越来越大 |
第十一章 中国物理学院士群体的成长路径 |
11.1 影响中国物理学院士成长的宏观要素 |
11.1.1 社会时代发展大背景的影响一直存在 |
11.1.2 国家发展战略需求导向要素有所减弱 |
11.1.3 国家科技管理制度的要素影响有所增强 |
11.1.4 中国传统文化对物理学院士潜移默化的影响 |
11.2 影响中国物理学院士成长的中观要素 |
11.2.1 物理学学科前沿发展需求的导向要素显着增强 |
11.2.2 空间结构“集聚性”的影响逐渐在减弱 |
11.2.3 师承关系的影响主要体现于学科延承方面 |
11.3 影响中国物理学院士成长的微观要素 |
11.3.1 性别差异对物理学家社会分层的影响很弱 |
11.3.2 年龄要素对物理学院士成长具有一定的影响 |
11.3.3 个人研究兴趣对物理学院士的成长影响增强 |
11.4 结语与展望 |
附录 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
个人简况及联系方式 |
(7)2018年全国“两会”材料产业链之声(论文提纲范文)
部长通道 |
万钢:即将发布人工智能项目指南和细则 |
王志刚:科技创新本质上是人才驱动 |
苗圩:新能源汽车未来还会呈现一个高速增长的发展态势 |
新材料发展建议 |
郑月明:新材料是制造强国之基 |
科技创新与成果转化 |
杨卫:基础强才能科技强、国家强 |
邱勇:为基础研究提供宽松政策环境 |
罗卫东:国家的创新能力正在进入新阶段 |
陈广浩:促进科技成果转化相关法律需进一步完善 |
程静:建议打造科技成果转化平台 |
韩恩厚:将东北亚科技创新中心纳入国家战略 |
智能制造 |
钱锋:5点建议推进原材料工业智能制造 |
徐冠巨:补齐供应链服务体系短板推动实体经济高质量发展 |
刘庆峰:抢抓人工智能的“中国机会” |
新能源汽车 |
农工党中央:完善我国新能源汽车产业政府补贴政策 |
欧阳明高:我国电动汽车自主发展的格局已经形成 |
王凤英:完善新能源法规促进产业健康快速发展 |
曾毓群:完善顶层设计加快新能源产业发展 |
曾庆洪:新能源汽车发展分步走 |
徐和谊:基础充电设施是新能源汽车发展的最大掣肘 |
刘汉如:应大力推动氢燃料电池汽车产业发展 |
电池产业 |
邹磊:加快氢能与燃料电池产业发展 |
吴端华:动力电池标准应从更深层次统一 |
谈民强:加强换电用动力电池规格标准化 |
蓝闽波:推动电动汽车智能有序充电和电池梯次利用 |
陈虹:新能源汽车动力电池回收亟待完善 |
周善红:立法规范新能源汽车废旧蓄电池回收利用 |
光伏产业 |
南存辉:加快完善政策推动新能源产业高质量发展 |
刘汉元:用市场化机制引导光伏产业健康发展 |
陈康平:推动太阳能级硅料加工贸易进口模式 |
张雷:让分布式能源成为电力市场化的有生力量 |
风电产业 |
张传卫:在家门口搞好海上风电开发 |
赵萍:海上风机大型化是趋势 |
核电产业 |
努尔·白克力:安全高效发展核电是重要方向 |
王寿君:中国核电健步“走出去” |
贺禹:发展核电是能源供给侧改革的必然选择 |
万钢:未来航天发展一定要用上核动力 |
罗琦:有序核准核电项目提升竞争力 |
段旭如:基础研究弱制约我国核技术发展 |
电子材料产业 |
董明珠:加大对高端晶圆等基础材料的研发 |
邓中翰:在智能芯片领域要有“换道超车”思维 |
潘建伟:10年后量子通信网络覆盖千家万户 |
吴远大:建议强化光电子核心关键技术与创新 |
林浩:发展自主知识产权集成电路产业迫在眉睫 |
钢铁产业 |
高祥明:改革创新引领钢铁行业新发展 |
张武宗:钢铁企业转型升级要过“三关” |
陈继壮:聚力供给侧改革实现高质量发展 |
侯军:钢铁行业可持续发展的3大路径 |
王树华:钢铁产业高质量发展必须坚持绿色发展 |
俞章法:双轮驱动推进高端装备智能制造 |
节能减排绿色发展 |
李灿:推进二氧化碳资源化绿色转化减排 |
张近东:大力推进快递绿色包装 |
刘同德:启动国家推进绿色建筑发展立法工作 |
彭寿:推广绿色建材发展绿色建筑 |
(8)国内外超细晶粒钢研究及发展趋势(论文提纲范文)
1 前言 |
2 国内外超细晶粒钢研究的主要内容及取得的效果 |
2.1 日本超细晶粒钢的研究 |
2.1.1 日本超细晶粒钢的研究内容 |
2.1.2 日本超细晶粒钢的研究效果 |
2.2 韩国“21世纪高性能结构钢研究” |
2.2.1 韩国超细晶粒钢的研究内容 |
2.2.2 韩国超细晶粒钢的研究效果 |
2.3 中国超细晶粒钢的研究 |
2.3.1 中国超细晶粒钢的研究内容 |
2.3.2 中国超细晶粒钢的研究效果 |
3 结语 |
(9)自主创新 助推钢铁行业技术进步(论文提纲范文)
一、继承老一辈科学家扎实严谨的科学精神, 敢于实践、善于实践, 注重学科交叉, 注重装备开发, 奠定RAL重点实验室优良学术传统 |
二、实验室的发展历程 |
三、工作定位决定研究水平、特色成就发展, 二十年发展谱华章, 二十年发展成就RAL轧制技术领域技术创新的“国”字头领军单位 |
四、发展目标和未来愿景:建设国际领先的轧制技术协同创新基地, 开发ECO的轧制工艺、技术和产品, 致力于成为新一代轧制技术的全球领跑者 |
轧制技术及连轧自动化国家重点实验室简介 |
(10)外加微米级ZrC颗粒强韧化低碳微合金钢的研究(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 绪论 |
1.0 引言 |
1.1 新一代钢铁材料的发展 |
1.1.1 新一代钢铁材料的研究现状 |
1.1.2 新一代钢铁材料的发展趋势 |
1.2 晶粒细化技术 |
1.2.1 形变诱导铁素体相变 |
1.2.2 微合金化细化晶粒 |
1.2.3 弛豫-析出-控制新思路 |
1.2.4 大塑性变形细化晶粒 |
1.2.5 形变热处理细化 |
1.2.6 其它细化方法 |
1.3 低碳微合金钢的强韧化机制及韧塑性 |
1.3.1 细晶强化 |
1.3.2 第二相强化 |
1.3.3 固溶强化 |
1.3.4 位错和亚结构强化 |
1.3.5 相变强化 |
1.3.6 各种强化方式对韧性的影响 |
1.3.7 各种强化方式对塑性的影响 |
1.4 微合金化元素在低碳微合金钢中的行为及作用 |
1.4.1 微合金元素形成的化合物 |
1.4.2 微合金元素在钢中的溶解 |
1.4.3 微合金元素在钢中的析出 |
1.4.4 微合金化元素的作用 |
1.5 外加第二相颗粒强化钢铁材料的研究状况 |
1.6 本论文研究的意义及研究的内容 |
1.6.1 研究的意义和目的 |
1.6.2 研究的内容 |
第二章 外加微米级ZrC颗粒的低碳微合金钢的熔炼工艺 |
2.1 实验仪器及设备 |
2.2 实验材料 |
2.2.1 原料钢 |
2.2.2 合金元素及外加颗粒 |
2.2.3 外加颗粒的选取 |
2.2.4 铁及碳化锆的性质 |
2.3 脱硫工艺 |
2.4 低碳微合金钢的化学成分 |
2.5 低碳微合金钢的熔炼工艺及ZrC的加入 |
第三章 外加微米级ZrC颗粒的低碳微合金钢的轧制与冷却工艺 |
3.1 低碳微合金钢的控轧控冷 |
3.1.1 控制轧制和控制冷却 |
3.1.2 控轧控冷的影响因素 |
3.2 轧制设备 |
3.3 轧制工艺和冷却工艺 |
第四章 外加微米级ZrC颗粒的低碳微合金钢的化学成分分析及微观组织 |
4.1 实验材料及研究方法 |
4.1.1 实验材料 |
4.1.2 实验仪器及设备 |
4.1.3 实验方法 |
4.2 化学成分分析结果 |
4.3 金相组织对比 |
4.4 扫描电镜(SEM)组织对比 |
4.4.1 轧制前试验钢的EBSP背散射和EDS能谱 |
4.4.2 轧制后试验钢的EBSP背散射和EDS能谱 |
4.4.3 轧制前后ZrC颗粒作用分析 |
4.5 透射电镜(TEM)组织对比 |
4.6 本章小结 |
第五章 外加微米级ZrC颗粒的低碳微合金钢的力学性能及强韧化机理分析 |
5.1 实验方法 |
5.1.1 实验仪器及设备 |
5.1.2 力学性能测试 |
5.1.3 断口形貌分析 |
5.1.4 相分析和粒度分布测定 |
5.2 力学性能测试结果 |
5.3 断口形貌 |
5.3.1 拉伸试样断口形貌 |
5.3.2 冲击试样断口形貌 |
5.3.3 断裂的微观机理 |
5.4 析出相 |
5.4.1 析出相的结构和质量分数 |
5.4.2 析出相的粒度分布 |
5.4.3 析出相的形核长大及粗化 |
5.5 强韧化机理分析及计算 |
5.5.1 位错运动的点阵阻力 |
5.5.2 细晶强化 |
5.5.3 固溶强化 |
5.5.4 第二相强化 |
5.5.5 位错与亚结构强化 |
5.5.6 强化的综合分析及外加ZrC颗粒的作用 |
5.5.7 塑韧性分析 |
5.6 本章小结 |
第六章 热处理对钢的组织与力学性能的影响 |
6.1 实验方法 |
6.1.1 实验仪器及设备 |
6.1.2 淬火和回火实验 |
6.1.3 力学性能测试 |
6.1.4 断口形貌分析 |
6.1.5 金相分析 |
6.2 金相分析结果 |
6.3 力学性能及晶粒尺寸测试结果 |
6.4 断口形貌分析 |
6.5 本章小结 |
第七章 结论及展望 |
7.1 本文结论 |
7.2 研究展望 |
参考文献 |
创新说明 |
攻读博士学位期间发表的论文 |
攻读博士学位期间参加的科研项目 |
致谢 |
个人简历 |
四、新一代钢铁材料的重大基础研究(论文参考文献)
- [1]江苏省人民政府办公厅关于印发江苏省“十四五”科技创新规划的通知[J]. 江苏省人民政府办公厅. 江苏省人民政府公报, 2021(17)
- [2]外加改性纳米粒子技术诱导钢中铁素体形核的基础研究[D]. 郭皓. 北京科技大学, 2021(08)
- [3]战后科技革命推动日本产业升级研究 ——基于创新体系的视角[D]. 刘伟岩. 吉林大学, 2020(03)
- [4]首钢京唐“全三脱”炼钢过程铁素物质流调控的应用基础研究[D]. 邓帅. 北京科技大学, 2020(06)
- [5]智能制造发展的国际比较与中国抉择[D]. 王媛媛. 福建师范大学, 2019(12)
- [6]中国物理学院士群体计量研究[D]. 刘欣. 山西大学, 2019(01)
- [7]2018年全国“两会”材料产业链之声[J]. 孙晓霞. 新材料产业, 2018(04)
- [8]国内外超细晶粒钢研究及发展趋势[J]. 宋立秋. 四川冶金, 2012(02)
- [9]自主创新 助推钢铁行业技术进步[J]. 轧制技术及连轧自动化国家重点实验室. 中国钢铁业, 2012(02)
- [10]外加微米级ZrC颗粒强韧化低碳微合金钢的研究[D]. 黄忠东. 东北大学, 2011(07)