判断系统稳定性的论文

判断系统稳定性的论文

问:系统稳定性的判断方法
  1. 答:判断系统稳定性的主要方法:奈奎斯特稳定判据和根轨迹法。
    它们根据控制系统的开环特性来判断闭环系统的稳定性。这些方法不仅适用于单变量系统,而且在经过推广之后也可用于多变量系统。
    稳定性理论:
    微分方程的一个分支。研究当初始条件甚至微分方程右端函数发生变化时,解随时间增长的变化情况。主要方法有特征数法,微分与积分不等式,李雅普诺夫函数法等。是天体力学,自动控制等各种动力系统中的首要问题。
    对稳定性的研究是自动控制理论中的一个基本问题。稳定性是一切自动控制系统必须满足的一个性能指标,它是系统在受到扰动作用后的运动可返回到原平衡状态的一种性能。关于运动稳定性理论的奠基性工作,是1892年俄国数学家和力学家 А.М.李雅普诺夫在论文《运动稳定性的一般问题》中完成的。
问:怎么判定稳定系统的稳定性?
  1. 答:判断系统稳定性的主要方法:奈奎斯特稳定判据和根轨迹法。
    它们根据控制系统的开环特性来判断闭环系统的稳定性。这些方法不仅适用于单变量系统,而且在经过推广之后也可用于多变量系统。
    稳定性理论:
    微分方程的一个分支。研究当初始条件甚至微分方程右端函数发生变化时,解随时间增长的变化情况。主要方法有特征数法,微分与积分不等式,李雅普诺夫函数法等。是天体力学,自动控制等各种动力系统中的首要问题。
    对稳定性的研究是自动控制理论中的一个基本问题。稳定性是一切自动控制系统必须满足的一个性能指标,它是系统在受到扰动作用后的运动可返回到原平衡状态的一种性能。关于运动稳定性理论的奠基性工作,是1892年俄国数学家和力学家 А.М.李雅普诺夫在论文《运动稳定性的一般问题》中完成的。
问:系统的稳定性如何判断?
  1. 答:判断系统稳定性的主要方法:奈奎斯特稳定判据和根轨迹法。
    它们根据控制系统的开环特性来判断闭环系统的稳定性。这些方法不仅适用于单变量系统,而且在经过推广之后也可用于多变量系统。
判断系统稳定性的论文
下载Doc文档

猜你喜欢