一、一道常见习题的证明与推广(论文文献综述)
徐思迪[1](2021)在《民国时期(1912-1940)大学入学数学试题研究》文中认为清末京师大学堂的建立,才产生了大学入学数学考试的雏形。直到民国时期才有较为完善的考试制度。民国时期大学入学考试经历了自主招生(1912-1937)、统一招生(1938-1940)、监管命题(1941-1946)三个阶段,其研究集中在考试制度史、中学课程标准、国立大学入学招生环节三个方面,与数学试卷有关的仅有数学课程标准的研究。1912-1940年是民国大学入学考试从自主招生向统一招生的过渡,因此选择这段时间的大学入学数学试卷作为研究对象。本研究采用文献研究法、历史比较法和基于数字人文视阈下的定量统计的方法。笔者首先收集到民国时期北京大学、北京师范大学等大学入学数学试卷共计100余套,并且梳理了民国时期中学数学课程标准、考试制度的演变历程。以壬戌学制颁布为节点,在壬戌学制颁布前、颁布后、统一招生时期中选择不同类型一流学校的试卷作为典型,这些试卷代表了当时大学招生考试对数学的要求。通过定性分析和定量统计分析试卷与课程标准的一致性情况、综合难度的变化。具体工作如下:(1)分析试卷的内容特点:首先对试卷的内容进行分类,数学课程标准对数学试题具有指导作用,因此运用当时使用的教科书对三个时期的试卷中的内容进行分析,以此分析试卷的内容变化情况。(2)统一招生时期试卷与课程标准的一致性程度:对SEC、Achieve、Webb三种一致性分析范式进行对比。由于课程标准(1936)中没有知识深度三级水平,因此选择可靠性较强、应用价值广泛、多角度的Webb分析模式从知识广度、知识种类、知识平衡性三个维度分析试卷与课程标准的一致性程度。(3)试卷的综合难度变化:以鲍建生的“综合难度系数模型”为基础,增加“是否含参”难度影响因素,用“综合程度”替代“知识含量”。为了改变原有的简单赋值,采用武小鹏的标度法,运用AHP层次分析法计算各难度影响因素的权重。分析统一招生时期试卷的综合难度以及三个时期的难度变化情况。通过上述研究,在厘清民国时期大学入学数学试题的难度变化、与课程标准的一致性程度的同时,丰富了民国时期大学入学数学试卷的研究。
蒋苏杰[2](2021)在《我国小学“统计与概率”教材内容的分析与比较 ——基于统计活动过程的视角》文中研究说明
白方[3](2021)在《几何变换思想在初中几何教学中的渗透与应用研究》文中认为几何变换作为一种重要的现代几何思想,其本质是运动变换思想和不变量思想。《义务教育数学课程标准(2011版)》规定,几何证明已从强调欧氏几何公理体系转向基于图形的性质和图形变换。如何在中学几何教学中有效地渗透与应用几何变换思想?本文重点研究在九年级几何教学过程中,几何变换思想的渗透与应用。本文研究以下4个问题:1、在初中几何教学中,几何变换思想的渗透与应用现状如何?2、针对九年级几何教学,有哪些有效的方法渗透几何变换思想?3、渗透几何变换思想的教学对九年级学生几何学习有哪些促进作用?4、对于不同层次的学生,这些促进作用是否具有一定的差异性?本文采用文献研究法,分析几何变换的研究现状,确定本文的研究思路。首先,通过问卷调查,了解目前初中几何教学中几何变换思想渗透的现状。籍由几何测验,了解学生运用几何变换解决几何问题的实际情况,建立研究的现实性基础。其次,挖掘教材中能够渗透几何变换的知识和习题载体,确定渗透教学目标层次与方法,设计教学案例,进行渗透与应用几何变换思想的几何教学的准实验研究。选择平行的两个班级进行单因素被试间的准实验,通过实验来检验几何变换思想的渗透与应用能否提高学生对几何变换的重视与运用,能否培养学生从运动变换的角度看问题的能力,能否提高学生的几何探究能力和发散思维。最后,通过对实验前后学生的问卷调查结果,对五次数学成绩进行量化分析,以及实验后对实验班学生进行“出声思维”的几何测验和测验结果的个案对比的质性分析,得出实验结论。研究得到如下结论:1.在初中几何教学中,教师对几何变换思想的渗透和运用持肯定态度,但是由于种种原因,实际教学中教师对几何变换思想的渗透和运用的现状还有待提高。相应地学生对几何变换不够重视,实际解题中变换的应用也存在不足。2.在教学中教师首先要提高对几何变换思想的重视,自觉地循序渐进地渗透几何变换思想。具体通过梳理教学中的渗透载体,通过图形剪拼来感受几何变换思想,通过变换关系探究来理解几何变换思想。通过探究一题多解来掌握几何变换思想,通过习题探究来灵活运用几何变换思想。3.渗透几何变换思想的几何教学,可提高学生对几何变换思想的重视程度,培养学生运动的几何观念,加深学生对数学知识本质的理解,提高学生的探究能力和几何思维能力。短期实验对成绩提高无显着影响,长期实验对成绩提高有显着影响。4.测试结果的个案对比表明,不同学习成绩的学生对几何变换思想的接受程度存在一定的差异。后进生对几何变换思想的接受存在一定的难度,还无法通过几何变换来解决几何问题。中等程度的学生与优等生比较容易接受几何变换思想,中等生表现在能从多角度看问题,能用几何变换来添加辅助线。优等生的几何探究能力得到提高,在解决复杂几何问题时,能够抓住问题的核心,能够灵活地运用几何变换对几何问题进行拓展研究,能从出题者的角度对试题进行命制。
罗丹[4](2021)在《高一学生函数概念CPFS结构调查研究》文中指出函数是高中数学课程中的四大主线之一,近年来函数概念的教学一直是数学教育的重点研究对象。有大量研究表明形成良好的认知结构有利于学生掌握学习方法,提高学习效率。喻平教授提出的CPFS结构理论为研究学生的认知结构提供了科学的依据,CPFS结构是由概念域、概念系、命题域和命题系组成的一种良好的用于数学研究的认知结构。调查研究学生的CPFS结构现状,对构建和完善学生良好的认知结构有指导性的作用。研究的核心问题:高一学生的CPFS结构现状如何以及存在怎样的问题?主要的影响因素有哪些?为调查高一学生函数概念的CPFS结构,首先采用文献分析法,分为函数概念教学研究与CPFS结构理论两大方向,分别对相关文献进行梳理;对新教材的《函数的概念与性质》进行分析和知识框架梳理,为之后的问卷编制奠定基础;接下来以CPFS结构理论为基础,基于CPFS结构的测查方法对喻平教授编制的问卷进行改编,并征求一线教师及专家的意见进行修改得到最后的问卷,并实施调查;最后对调查问卷进行数据处理,并发放测试问卷以及进行师生访谈,从定量和定性两方面综合分析高一学生的CPFS结构现状,并从多角度分析影响学生函数概念CPFS结构现状的因素。研究结论:(1)高一学生函数概念的CPFS结构呈现中等水平。(2)学生对函数概念系和命题系的掌握程度低于概念域和命题域的掌握程度。(3)学生头脑中缺乏清晰的知识框架,且缺乏完善数学认知结构的意识。(4)高一学生对函数的本质内涵把握不够准确,数学语言的转换能力和严谨性有待提高。通过研究分析,学生函数概念CPFS结构的形成主要受到课程知识、教师和学生自身三方面因素的影响,在改进教学时主要针对课程维度、教师维度和学生维度进行,重视对课程内容的处理,促进知识衔接和结构完整;教师作为教育的主导者,从多方面提高高一学生的适应能力,将教育理论应用于概念教学;学生作为教育的主体,挖掘概念命题本质,主动构建和完善CPFS结构。
栾威[5](2021)在《《发展汉语(高级口语)》与《高级汉语口语》教材练习题的比较研究》文中研究说明练习题是教材的一部分,是教师进行教学的重要参考材料,是学生巩固知识的必要环节,所以练习题应该受到重视。但目前为止,学术界对对外汉语高级阶段口语教材的练习题关注较少,因此笔者想通过对《发展汉语(高级口语)》《高级汉语口语》两套教材的练习题进行研究,希望给对外汉语高级阶段的口语教材练习题的编写提供一些基础数据,给教材的修订和使用提供一些不成熟的建议。本论文第一章绪论部分,介绍了论文的研究对象和研究依据,确定了研究方法和研究意义,并对当前的对外汉语口语教材及对外汉语口语教材练习题的研究现状进行梳理,明确论文的研究方向。第二章从题量和题型类型两方面对《发展汉语(高级口语)》《高级汉语口语》两套教材的练习题进行统计分析,发现两套教材的练习题题量充足,都能够满足高级阶段汉语学习者口语练习的需要;在题型类型方面,两套教材都比较重视理解型练习题和交际型练习题。第三章从内容方面对《发展汉语(高级口语)》《高级汉语口语》两套教材的练习题进行统计分析,发现这两套教材在语音、词汇、功能、话题上各有特点:《高级汉语口语》比较重视语音练习,《发展汉语(高级口语)》比较重视词汇练习和功能性练习题,《发展汉语(高级口语)》练习题涉及的话题比较正式,《高级汉语口语》练习题涉及的话题较为口语化。第四章对《发展汉语(高级口语)》《高级汉语口语》两套教材练习题的文化信息引入方面进行数据统计分析,发现两套教材的练习题都比较重视现代文化信息引入,传统文化信息引入相对较少。第五章根据《发展汉语(高级口语)》《高级汉语口语》两套教材练习题的统计分析结果,结合相关的理论依据和访谈结果提出修订建议:适当增加句式部分例题的数量,增强习题趣味性,增强层级过渡的合理性,文化信息的引入关注体验性;提出使用建议:精选或泛用练习题,精讲多练,延展具有时代性的词汇练习,适当引导文化体验练习等。
王秋硕[6](2021)在《基于波利亚解题思想下的高中三角函数解题策略研究》文中研究说明解题是数学教学的核心,解题教学也一直是国内外专家学者研究的重点问题。三角函数作为高中数学的重点知识模块,在高考中具有举足轻重的地位,学生在解三角函数问题时又往往存在困难。因此,本文将波利亚解题思想与三角函数解题相结合,探索出适用于三角函数问题的相关解题策略,对学生的三角函数解题实践具有指导意义。本文采取文献分析法和案例分析法,以波利亚解题思想为基础,对高中三角函数部分的《课标》、教科书以及相关高考题目进行探析,结合高中生在解决三角函数问题时所产生的障碍,归纳整理出了十条波利亚解题思想下的三函数解题策略如下,理解题目阶段:1.梳理显性条件;2.引入辅助工具;3.挖掘隐性条件。拟定方案阶段:1.寻找问题联系;2.变换问题表征;3.回归问题本身。执行方案阶段:1.细化解题步骤;2.检查每一个步骤。回顾反思阶段:1.优化解题方式;2.建立解题模型。随后,笔者对该三角函数解题策略的实践意义进行研究,利用该解题策略解决三角函数部分的三类典型问题并建立相关的解题模型,让学生体会如何在解题时寻找思路。最后基于波利亚解题思想提出有关三角函数解题教学的八条建议如下,理解题目阶段:1.创设生活情景,激发解题兴趣;2.借助元认知监控,提升审题能力。拟定方案阶段:1.呈现同类问题,理清问题联系;2.活用三角公式,寻找解题思路。执行方案阶段:1.分析步骤意图,体会解题思想;2.规范书写步骤,提高纠错能力。回顾反思阶段:1.重视典型例题,建立解题程序;2.巧用变式教学,培养创新思维。随后基于以上教学建议设计了两节三角函数习题课的教学案例,对其实用性与可行性进行探索。本文不仅仅是波利亚解题思想的一种推广,也对学生的解题实践以及一线教师的解题教学有着重要的指导价值。
魏嘉[7](2021)在《高中数学人教A版新旧教材“不等式”部分比较研究》文中进行了进一步梳理随着时代的脚步不断前行,我国的教育改革也正在如火如荼地进行。2018年,教育部颁发了《普通高中数学课程标准(2017版)》(以下简称新课标),在此之前我国高中数学教材都是依据《普通高中数学课程标准(实验版)》(以下简称旧课标)编写和修订的,新课标在旧课标的基础上,将基本理念高度凝练,发展“双基”为“四基”,拓展“三能”为“四能”,由提高“五大能力”转变为发展“六大数学学科核心素养”。高中数学教材是课程标准的具体呈现和重要载体,随着新课标的颁布也进行了全面修订,并逐步在全国范围内投入使用。要想合理地使用新教材,发挥其最大效用,就要用科学的手段研究新教材,分析其编写理念,探寻其在旧教材的基础上做出了哪些改动。本文选取了高中数学人教A版2007年版必修五第三章和2019年版必修一第二章为研究对象,二者均为高中数学不等式内容的必修部分,采用文献研究法、比较研究法、访谈法等研究方法,借助鲍建生教授的例习题综合难度模型和解释结构模型(ISM法)等工具,先对国内外已有的教材研究成果进行了梳理和综述,再从不等式部分的课程标准、编写体例、知识结构和例题习题四个方面进行了具体的分析和比较研究,最后对一线教师进行访谈,了解新教材使用情况及其对新教材不等式的教学建议。根据上述研究发现,新教材的设计更加人性化,考虑到学生的认知基础和认知心理,新增预备知识解决初高中衔接问题,优化章节引入、栏目、小结,删减繁难知识,调整知识呈现顺序,完善例题设置,细化习题层次,这些改变均符合新课标提出的“以学生发展为本”,渗透了数学学科核心素养。结合以上研究结论,笔者针对新教材的特点提出不等式部分的教学建议并设计了一个教学案例供读者参考。希望通过不等式部分的量化研究和根据当前现状提出的新教材不等式部分教学建议能够为一线教师的教学提供教学思路和参考价值,从而为我国培养优秀的高素质人才贡献自己的力量。
罗瑞[8](2021)在《小学数学教师研读教材的实践研究 ——以Z名师工作室为例》文中研究表明研读教材既是新课改的要求,也是教师专业化发展的要求,还是教师进行深度课堂教学的基础和前提,是备好课、上好课的核心环节。教师研读教材主要是对教材知识点进行钻研与表达,本研究为深入地剖析这一教学过程,将其分为两个阶段:对教材进行内化的“研”与外化的“读”,但其实“研”与“读”这两个过程是相辅相成的,“研”是“读”的基础,“读”是“研”的升华,二者相统一,即进行教材文本研读和课堂实践研读。本研究以KM市PL区Z名师工作室作为研究对象。主要研究四个方面的问题:第一,“数与代数”模块在小学数学教材中的编排与呈现。第二,小学数学教师研读教材的过程与方法。第三,小学数学教师在具体执教课题中如何研读教材。第四,多轮研读教材教学设计与实践的微循环过程对工作室、教师、学生产生的影响。综合运用文献法、访谈法、观察法以及实物分析法等研究方法,从每一次执教课题选定后进行的第一轮研读,到“课堂教学——干预——反思——修正”过程中的全员集体评课、研讨,从而为执教者提出下一轮的研读建议等一系列活动,研究者一直参与到此工作室对该课题的研究中。基于此研究,得出以下结论:第一,“数与代数”在四大领域中单元数和课时数占比都是最大,且“数的认识”和“数的运算”占比又高于其他部分,每部分都呈现螺旋式的编排,小学阶段深研此模块教材内容具有重要意义。第二,小学数学教师研读教材的过程与方法包括三原则、四愿景、四方法、四方式以及五步骤。(1)三条原则:注重间接经验与直接经验相结合、理论与实践相结合、继承与创新相结合的原则。(2)四个愿景:致力于完成学科教学任务、打造高效课堂;致力于全面、深入地把握教材文本传递的作用;致力于推进素质教育的实施、更好地服务学生;致力于提升教师专业素养、促进其职业发展。(3)四种方法:整体系统研读法、深度追问研读法、横纵对比研读法以及移情理解研读法。(4)四种方式:自我研读、交流研读、合作研读、指导研读。(5)五个步骤:以课标为基本依据,明晰课程总目标与学段目标的要求;“初研”教材整体结构;“再研”教材重点、难点和关键;“细研”主题图、例题和习题;“深研”教材编写意图。第三,“数与代数”模块五个研读课例从“研”到“读”的全过程。研读课例分析中由“研”到“读”四转换:教材文本转换为问题框架、问题框架转换为外部问题、外部问题转换为教学策略以及教学策略转换为教学活动。四环节:研、议、思、写。第四,此课题的开展过程对教师的影响。提升了教师研读教材的能力并且多轮微循环的研讨改进过程增进了教师间的沟通、交流以及合作的能力。对学生的影响。增强了学生对教学内容理解的深度,进而实现深度学习的目标。基于研究结论的启示:工作室课题的开展对提升教师研读水平具有重要意义,制度与策略是改善研读效果的重要基础,应持续、深入地进行研读教材实践研究以及课例开发。
孙杰[9](2021)在《基于SOLO分类理论的三角函数教学设计研究》文中进行了进一步梳理《普通高中数学课程标准(2017年版)》将必修课程划分为五大主题,共需144课时,其中函数主题所占课时比例最大;而三角函数作为函数主题中的一个主要分支、高考的重要考点,需要教师花费大量的时间和精力去组织教学。另外,随着2019版高中数学新教材的推行和实施,三角函数部分的知识内容也发生了很大的改动,这就要求教师针对这种变化以及三角函数的特点对教学做出相应的调整,通过学习新理念,更新教学设计来提高课堂教学的效率和质量,使学生能够更好地掌握知识。SOLO分类理论是一种经过大量实践后被广泛认可的教学理论模型;利用SOLO分类理论,教师可以关注学生在特定学习任务上的表现,通过判断学生在回答某一具体问题时思维结构所处的层次,时刻把握学生的认知发展水平;所以,SOLO分类理论为教师进行教学评价以及规划教学设计提供了一个有力的理论框架。因此,本文提出以SOLO分类理论为指导来优化三角函数的教学设计,以求在提高教学质量的同时,帮助学生更好地消化三角函数知识。首先,笔者通过研读相关文献资料,对SOLO分类理论、三角函数以及它们在高中数学教学中的相关研究现状进行了深入的了解,为接下来的研究奠定相应的理论基础;其次,笔者以学生的思维结构水平为关注点,基于SOLO分类理论对三角函数这一章的教学设计进行指导,主要是将其与前期分析、教学目标的确立、教学重难点的解析、课堂提问的设计、例习题的编制以及教学评价的设计相融合,提出具体的教学设计策略和相关的案例分析,从而达到优化教学设计的效果;再次,笔者利用调查问卷法和访谈法等研究方法,对《三角函数的概念(第1课时)》这一课例进行对比实验研究,通过对样本数据进行统计、整理、对比与分析,发现在SOLO分类理论指导下修改的教学设计更能引导学生的思维结构水平向深层次发展,更好地实现教学目标;验证了以SOLO分类理论建立的教学设计模型在高中数学教学中具有一定的实效性和适用性;最后,笔者通过对整个研究过程进行总结与反思,在文章的结尾提出了本次研究的展望与不足。SOLO分类理论提供了一种与以往不同的“质性”评价方法,以SOLO分类理论来指导三角函数的教学设计,更多关注的是学生的认知结构和思维水平的可持续性发展。通过在知识与学生的思维之间建立衔接点,可以提高课堂教学质量和教学效率,改善学生的学习情况,为今后的教学和研究提供了一定的参考价值。
王曼[10](2021)在《基于运动与相互作用观培养的高中物理教学策略研究》文中认为学生的核心素养对学生的终身发展有着重要的作用,而物理观念又是物理学科核心素养的重要部分之一。物理观念主要包括物质观念、运动与相互作用观念、能量观念等要素。运动与相互作用观念又是物理观念的重要部分之一。运动与相互作用观念是学生通过对物理课程中相应知识和方法的学习、提炼、内化、及升华后,所形成的对于物理世界中运动与相互作用整体性的看法。因此运动与相互作用观念的养成有利于学生对于物理世界有一个更深层次的理解。运动与相互作用观念的形成是一个漫长的过程,而本研究通过文献梳理后进行了基于运动与相互作用观培养的高中物理教学策略研究,主要进行高中运动与相互作用观培养的现状调查及策略的提出。通过结合前人已有的相关研究对物理观念以及运动与相互作用观念的内涵与结构和形成过程以及相关教学策略进行了研究,并对高中必修课程的内容进行了梳理,通过梳理对运动与相互作用观念有关的知识进行了从新划分,对运动与相互作用观念的形成中学生具备的具体观点进行了阐述。之后通过相关理论研究设计了调查问卷,通过认知维度,情意维度,能力维度调查了学生在运动与相互作用观念形成的这个过程中对于物理观念的学习现状,以及学生眼中教师的观念教学现状。通过问卷分析发现目前运动与相互作用观念培养的现状以及相应的问题,根据实际教学进行了总结归纳,通过研究制定了相应的教学策略,设计了以观念构建为核心的教学设计。
二、一道常见习题的证明与推广(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、一道常见习题的证明与推广(论文提纲范文)
(1)民国时期(1912-1940)大学入学数学试题研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 选题缘由 |
1.2 研究目的与问题 |
1.2.1 研究目的 |
1.2.2 研究问题 |
1.3 研究对象 |
1.4 研究方法 |
1.5 研究意义与创新 |
2 文献综述 |
2.1 以考试制度史为对象的研究 |
2.2 以课程标准为对象的研究 |
2.3 以民国国立大学入学招生考试为对象的研究 |
3 壬戌学制颁布前试题分析(1912-1922) |
3.1 分期原因 |
3.2 学制变迁 |
3.3 课程标准 |
3.4 考试制度以及考试范围 |
3.5 典型试题分析 |
3.5.1 北京师范大学、北京大学数学试卷举例 |
3.5.2 试卷特点 |
3.5.3 各分支学科试题分析 |
4 壬戌学制颁布后试题分析(1923-1937) |
4.1 学制变迁 |
4.2 课程标准演变过程 |
4.2.1 课程纲要时期(1922-1927) |
4.2.2 课程标准时期(1928-1937) |
4.3 考试制度与范围 |
4.4 典型试题举例 |
4.4.1 试卷特点 |
4.4.2 各分支学科试题分析 |
5 统一招生时期试题分析(1937-1940) |
5.1 课程标准 |
5.2 制度、考试范围 |
5.3 典型试卷举例 |
5.3.1 甲组(第二组) |
5.3.2 乙组(第一组)试题举例分析 |
5.3.3 丙组(第三组)试题 |
6 基于数字人文视阈下的定量分析 |
6.1 一致性分析 |
6.2 韦伯一致性分析范式 |
6.2.1 韦伯一致性分析基本框架 |
6.2.2 本土化改造 |
6.2.3 编码方法及资料整理的方法 |
6.2.4 试卷编码过程说明 |
6.2.5 统计资料整理的过程 |
6.2.6 一致性统计整体分析 |
6.2.7 结论 |
6.3 综合难度系数模型定量分析 |
6.3.1 基于AHP的权重计算方法 |
6.3.2 各因素的权重系数计算 |
6.3.3 数据收集与处理 |
6.3.4 统一招生时期综合难度系数分析 |
6.4 综合难度系数比较 |
6.4.1 数据收集 |
6.4.2 不同难度因素比较 |
6.4.3 综合难度差异 |
7 研究结论与不足 |
7.1 研究结论 |
7.2 研究不足与展望 |
参考文献 |
附录1 壬戌学制前1912-1922 年典型试卷 |
附录2 壬戌学制颁布后1923-1937 年典型试卷 |
附录3 统一招生时期试卷(第二组) |
附录4 《高级中学正式课程标准》内容 |
附录5 《高级中学普通科算学暂行课程标准》内容 |
附录6 《高级中学算学课程标准》内容 |
致谢 |
在校期间研究成果 |
(3)几何变换思想在初中几何教学中的渗透与应用研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 数学教育现代化的要求 |
1.1.2 课程标准对几何变换的要求 |
1.1.3 初中几何教学的实际现状 |
1.2 研究问题 |
1.3 研究方法 |
1.4 研究目的与研究意义 |
1.5 研究思路和研究框架 |
第2章 研究综述与理论基础 |
2.1 核心概念的界定 |
2.1.1 几何变换 |
2.1.2 常见的初等几何变换 |
2.1.3 几何变换思想 |
2.1.4 几何变换思想的渗透 |
2.2 研究综述 |
2.2.1 几何变换思想的价值研究 |
2.2.2 几何变换思想的教学研究 |
2.2.3 国外几何变换的相关研究 |
2.3 现有研究的不足 |
2.4 相关理论基础 |
2.4.1 范希尔几何思维理论 |
2.4.2 出声思维理论 |
第3章 初中几何变换教学现状调查 |
3.1 调查目的与调查对象 |
3.1.1 调查目的 |
3.1.2 调查对象 |
3.2 问卷编制和前测试卷的编制 |
3.3 问卷调查结果的统计分析 |
3.3.1 教师对几何变换的认识以及渗透情况 |
3.3.2 学生对几何变换的认识以及运用情况 |
3.4 学生测试结果的分析 |
3.5 几何变换教学现状的原因分析 |
3.5.1 教师对几何变换思想的应用重视不够 |
3.5.2 学生运动变换的观念有待提升 |
第4章 几何变换思想渗透的教学分析 |
4.1 教材中几何变换思想的渗透载体 |
4.2 几何变换思想渗透的原则 |
4.3 几何变换思想的教学目标层次 |
4.4 渗透几何变换思想的教学措施 |
4.4.1 图形剪拼体会几何变换思想 |
4.4.2 变换关系探究理解几何变换思想 |
4.4.3 尝试一题多解掌握几何变换思想 |
4.4.4 平面镶嵌图形设计活用几何变换思想 |
4.5 渗透几何变换思想的教学设计案例 |
4.5.1 教学设计一:《相似常见模型关系的探究》 |
4.5.2 教学设计二:《渗透几何变换思想的习题探究》 |
第5章 几何变换思想渗透的教学实验 |
5.1 实验对象和过程 |
5.2 实验假设 |
5.3 实验测试工具 |
5.4 实验结果的分析 |
5.4.1 实验前后学生问卷的统计分析 |
5.4.2 实验前后数学学业成绩的数据分析 |
5.4.3 实验后几何测试的出声思维分析 |
5.4.4 实验后几何测试结果的个案对比分析 |
5.5 几何变换思想渗透的教学建议 |
第6章 结论与展望 |
6.1 研究结论 |
6.2 研究不足 |
6.3 展望 |
参考文献 |
附录一 教师问卷 |
附录二 学生问卷 |
附录三 |
致谢 |
(4)高一学生函数概念CPFS结构调查研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题提出 |
1.2 概念界定 |
1.2.1 CPFS结构 |
1.2.2 高中函数概念 |
1.2.3 概念图 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 研究思路 |
1.5 研究方法 |
1.5.1 文献分析法 |
1.5.2 调查研究方法 |
1.5.3 统计分析法 |
1.6 研究重点、难点及创新点 |
1.6.1 研究重点 |
1.6.2 研究难点 |
1.6.3 研究创新点 |
1.7 论文结构 |
第二章 文献综述与理论基础 |
2.1 文献综述 |
2.1.1 CPFS结构的研究现状 |
2.1.2 函数概念教学的研究现状 |
2.1.3 文献述评 |
2.2 理论基础 |
2.2.1 认知结构理论 |
2.2.2 认知同化理论 |
第三章 CPFS结构下的函数概念分析 |
3.1 分析函数概念框架的意义 |
3.2 《新课标》对函数概念学习的要求 |
3.2.1 函数概念 |
3.2.2 函数性质 |
3.3 函数内容的整理分析 |
第四章 问卷调查设计 |
4.1 调查问卷设计 |
4.1.1 研究对象的选取 |
4.1.2 测试卷的设计 |
4.1.3 测试卷信效度分析 |
4.1.4 测试卷难度分析 |
4.1.5 测试卷区分度分析 |
4.2 测试问卷数据处理 |
4.2.1 数据收集情况 |
4.2.2 测试卷得分统计分析 |
4.2.3 测试卷得分性别差异性分析 |
4.2.4 不同学习能力的学生测试卷得分差异性分析 |
4.3 习题卷编制依据 |
4.4 习题卷的文本分析 |
4.5 访谈实录与分析 |
4.5.1 学生访谈 |
4.5.2 教师访谈 |
4.5.3 访谈分析总结 |
第五章 高一学生函数概念CPFS结构现状分析与建议 |
5.1 学生存在的问题 |
5.2 影响CPFS结构的因素 |
5.2.1 知识角度 |
5.2.2 教师因素 |
5.2.3 学生因素 |
5.3 针对学生函数CPFS结构测试结果的改进建议 |
5.3.1 课程维度——促进知识衔接和结构完整 |
5.3.2 教师维度——应用认知同化理论进行教学 |
5.3.3 教师维度——重视数学语言的严谨性 |
5.3.4 教师维度——重视思维训练和框架梳理 |
5.3.5 学生维度——梳理知识,挖掘概念本质 |
5.3.6 学生维度——利用概念图完善CPFS结构 |
第六章 结论、不足与展望 |
6.1 调查研究结论 |
6.2 调查研究的局限与展望 |
参考文献 |
附录 |
附录1 高一函数概念CPFS结构测试问卷 |
附录2 高一函数函数CPFS结构习题测试卷 |
附录3 学生访谈提纲 |
附录4 教师访谈提纲 |
致谢 |
(5)《发展汉语(高级口语)》与《高级汉语口语》教材练习题的比较研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究对象及研究依据 |
1.1.1 研究对象 |
1.1.2 研究依据 |
1.2 研究方法及研究意义 |
1.2.1 研究方法 |
1.2.2 研究意义 |
1.3 相关研究综述 |
1.3.1 针对对外汉语口语教材的研究 |
1.3.2 针对对外汉语教材练习题的研究 |
1.3.3 针对对外汉语口语教材练习题的研究 |
第2章 两套高级口语教材练习题题量和题型的统计与对比分析 |
2.1 题量的统计与对比分析 |
2.1.1 总题量的统计与对比分析 |
2.1.2 题型数量的统计与对比分析 |
2.2 题型类型的统计与对比分析 |
2.2.1 题型类型的统计与对比 |
2.2.2 题型类型的差异分析 |
第3章 两套高级口语教材练习题内容的统计与对比分析 |
3.1 语音练习题的统计与对比分析 |
3.1.1 语音练习题的统计与对比 |
3.1.2 语音练习题的差异分析 |
3.2 词汇练习题的统计与对比分析 |
3.2.1 词汇练习题的统计与对比 |
3.2.2 词汇练习题的差异分析 |
3.3 功能练习题的统计与对比分析 |
3.3.1 功能练习题的统计与对比 |
3.3.2 功能练习题的差异分析 |
3.4 话题练习题的统计与对比分析 |
3.4.1 话题练习题的统计与对比 |
3.4.2 话题练习题的差异分析 |
第4章 两套高级口语教材练习题中文化信息引入的统计与对比分析 |
4.1 练习题中中国传统文化信息引入的统计与对比分析 |
4.1.1 题量的统计与对比分析 |
4.1.2 题型的统计与对比分析 |
4.1.3 文化主题的统计与对比分析 |
4.2 练习题中现代文化信息引入的统计与对比分析 |
4.2.1 题量的统计与对比分析 |
4.2.2 题型的统计与对比分析 |
4.2.3 文化主题的统计与对比分析 |
第5章 对于两套高级口语教材练习题的修订与使用建议 |
5.1 对于两套高级口语教材练习题的修订建议 |
5.1.1 《发展汉语(高级口语)》增强例题示范性 |
5.1.2 《发展汉语(高级口语)》增强习题趣味性 |
5.1.3 《发展汉语(高级口语)》增强层级合理性 |
5.1.4 两套教材均需增强文化体验性 |
5.2 对于两套高级口语教材练习题的使用建议 |
5.2.1 精讲多练,课内外练习相结合 |
5.2.2 结合实际精选或泛用教材练习题 |
5.2.3 延展具有时代性的词汇练习 |
5.2.4 适当引导文化体验练习 |
第6章 结论 |
参考文献 |
附录A 高级口语教材练习题使用情况访谈设计(教师版) |
附录B 高级口语教材练习题使用情况访谈设计(学生版) |
在学期间研究成果 |
致谢 |
(6)基于波利亚解题思想下的高中三角函数解题策略研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)《课标》对三角函数部分的要求 |
(二)高考考纲对三角函数部分的要求 |
二、研究内容 |
三、研究意义 |
第二章 文献综述 |
一、理论基础 |
(一)波利亚的“怎样解题表” |
(二)波利亚的解题思想 |
二、波利亚解题思想研究现状 |
(一)国外研究现状 |
(二)国内研究现状 |
三、三角函数解题研究现状 |
(一)三角函数解题障碍研究 |
(二)三角函数解题模块研究 |
(三)三角函数解题策略研究 |
四、综述小结 |
第三章 波利亚解题思想在高中三角函数解题中的应用 |
一、波利亚的解题思想在高中三角函数解题中应用的可行性分析 |
(一)波利亚解题思想下的教学观、教师观、学生观分析 |
(二)高中三角函数教材分析与考点解读 |
(三)三角函数的解题障碍分析 |
二、波利亚解题思想下的三角函数解题策略探究 |
(一)理解题目阶段 |
(二)拟定方案阶段 |
(三)执行方案阶段 |
(四)回顾反思阶段 |
第四章 运用三角函数解题策略解决三角函数典型问题 |
一、同角三角函数的基本关系与诱导公式类问题 |
(一)诱导公式的妙用类问题 |
(二)sinx+cosx,sinx-cosx,sinxcosx之间的关系类问题 |
二、三角函数图象和性质相关问题 |
(一)由三角函数图象求解析式问题 |
(二)由三角函数单调性求参数范围问题 |
三、三角恒等变换问题 |
(一)“角的变换”相关问题 |
(二)三角函数与平面向量交汇问题 |
第五章 波利亚解题思想下的三角函数解题教学 |
一、波利亚解题思想下的三角函数解题教学建议 |
(一)理解题目阶段 |
(二)拟定方案阶段 |
(三)执行方案阶段 |
(四)回顾反思阶段 |
二、波利亚解题思想下的三角函数习题课教学设计案例 |
(一)《正弦、余弦函数的图象与性质习题课》教学设计 |
(二)《三角恒等变换习题课》教学设计 |
第六章 研究结论及展望 |
一、研究结论 |
二、研究不足 |
三、研究展望 |
注释 |
参考文献 |
附录 |
攻读硕士期间所发表的学术论文 |
致谢 |
(7)高中数学人教A版新旧教材“不等式”部分比较研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)新课程改革提出新要求 |
(二)新教材投入使用时间尚短 |
(三)不等式是高中数学学习的基础 |
二、研究意义 |
三、研究问题 |
第二章 研究设计 |
一、研究对象 |
二、研究思路和方法 |
(一)研究思路 |
(二)研究方法 |
三、研究工具 |
(一)解释结构模型 |
(二)例习题难度综合模型 |
第三章 文献综述 |
一、数学教材比较研究 |
(一)国内外数学教材比较研究 |
(二)我国数学教材比较研究 |
二、中学数学不等式部分研究 |
(一)国外不等式研究现状 |
(二)国内不等式研究现状 |
三、文献评述 |
第四章 新旧教材中“不等式”部分的比较 |
一、《课标(实验)》与《课标(2017)》关于不等式必修部分的比较 |
(一)课程结构比较 |
(二)内容要求比较 |
二、编写体例比较 |
(一)章节布局比较 |
(二)章头比较 |
(三)栏目设置比较 |
(四)章末比较 |
三、知识结构比较 |
(一)新旧教材ISM法知识结构比较 |
(二)模型结果分析 |
四、例习题综合比较 |
(一)研究对象界定 |
(二)例习题数量比较 |
(三)例习题难度比较 |
五、本章小结 |
(一)设置预备知识,优化课程结构 |
(二)完善章节布局,栏目设置丰富 |
(三)知识表述严谨,知识结构符合学生认知心理 |
(四)例题示范性更强,习题层次分明 |
第五章 教师访谈 |
一、访谈对象的选择 |
二、访谈问题的设计 |
三、访谈结果总结 |
第六章 基于新旧教材比较的教学建议及教学设计 |
一、教学建议 |
(一)研读新版课标,分析教材编写意图 |
(二)注重初高中知识衔接,考虑学生认知心理 |
(三)在不等式教学中渗透数学思想方法 |
(四)充分发挥例题示范及强化功能 |
(五)精简习题,分层训练,实现因材施教 |
二、教学设计 |
(一)基于新旧教材比较的教学设计分析 |
(二)《等式性质与不等式性质(第2 课时)》教学设计 |
结语 |
注释 |
参考文献 |
附录 |
附录一 |
附录二 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(8)小学数学教师研读教材的实践研究 ——以Z名师工作室为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 核心概念界定与相关概念辨析 |
1.3 研究的理论基础与模式 |
1.4 研究的内容 |
1.5 研究的目的和意义 |
1.6 研究的思路 |
1.7 论文的结构 |
第2章 文献综述 |
2.1 课程理解的相关研究 |
2.1.1 教师课程理解的内涵 |
2.1.2 教师课程理解的基本内容 |
2.1.3 教师课程理解的影响因素 |
2.2 教材理解的相关研究 |
2.2.1 教材理解重要性 |
2.2.2 教材使用 |
2.3 研读教材的相关研究 |
2.3.1 研读教材的重要性 |
2.3.2 研读教材的内容 |
2.3.3 研读教材的视角 |
2.3.4 研读教材的方法 |
2.3.5 研读教材的策略 |
2.4 文献评述 |
第3章 研究设计 |
3.1 研究对象 |
3.2 研究工具 |
3.3 研究方法 |
3.4 资料收集与整理 |
3.5 研究的伦理 |
3.6 小结 |
第4章 小学数学教材“数与代数”模块的内容分析 |
4.1 研读“数与代数”模块的总体设计 |
4.1.1“数与代数”在四大模块中单元数的分布情况 |
4.1.2“数与代数”在四大模块中课时数的分布情况 |
4.1.3“数与代数”模块知识结构体系的呈现 |
4.1.4“数与代数”模块新知识例题数分布情况 |
4.1.5“数与代数”模块单元、节的基本结构 |
4.2“数的认识”部分教学内容分析 |
4.2.1 研读教材知识结构体系 |
4.2.2 研读教学内容间的联系与衔接 |
4.3“数的运算”部分教学内容分析 |
4.3.1 研读教材知识结构体系 |
4.3.2 研读教学内容间的联系与衔接 |
4.4“常见的量”部分教学内容分析 |
4.4.1 研读教材知识结构体系 |
4.4.2 研读教学内容间的联系与衔接 |
4.5“探索规律”部分教学内容分析 |
4.6“代数初步”部分教学内容分析 |
4.6.1 研读“式与方程”部分教材知识结构 |
4.6.2 研读“正、反比例”部分教材知识结构 |
4.7 研读“数与代数”模块教学内容的特点 |
4.7.1 关注生活情境的运用 |
4.7.2 关注学生数感的培养 |
4.7.3 重视算理与算法的联系 |
4.7.4 重视估算意识与能力的培养 |
4.8 小结 |
第5章 小学数学教师研读教材的过程与方法 |
5.1 小学数学教师研读教材的愿景 |
5.1.1 致力于完成学科教学任务、打造高效课堂 |
5.1.2 致力于全面、深入地把握教材文本传递的作用 |
5.1.3 致力于推进素质教育的实施、更好地服务学生 |
5.1.4 致力于提升教师专业素养、促进其职业发展 |
5.2 小学数学教师研读教材时应遵循的原则 |
5.2.1 理论与实践相结合的原则 |
5.2.2 间接经验与直接经验相结合的原则 |
5.2.3 继承与创新相结合的原则 |
5.3 小学数学教师研读教材的方法 |
5.3.1 整体系统研读法 |
5.3.2 深度追问研读法 |
5.3.3 横纵对比研读法 |
5.3.4 移情理解研读法 |
5.4 小学数学教师“研”教材文本的步骤 |
5.4.1 课标为据,明晰要求 |
5.4.2“初研”教材整体结构 |
5.4.3“再研”教材重点、难点和关键 |
5.4.4“细研”主题图、例题和习题 |
5.4.5“深研”教材编写意图 |
5.5 小学数学教师研读教材的方式 |
5.5.1 自我研读 |
5.5.2 交流研读 |
5.5.3 合作研读 |
5.5.4 指导研读 |
5.6 小学数学教师研读教材前后的教育教学效果 |
5.7 小结 |
第6章 小学数学教师研读教材的课例分析 |
6.1 研读教材课例的选取 |
6.1.1 内容层次 |
6.1.2 水平层次 |
6.1.3 结构层次 |
6.2“数的认识”部分课例分析——还原数学知识的本质原理 |
6.2.1 执教教师、学生与教学主题 |
6.2.2 课标、教材、教师教学用书中的“分数的初步认识” |
6.2.3 教师内化教材“研”的过程 |
6.2.4 教师外化教材“读”的过程 |
6.3“数的运算”部分课例分析——还原数学知识的本质原理 |
6.3.1 执教教师、学生与教学主题 |
6.3.2 课标、教材、教师教学用书中的“单价、数量和总价” |
6.3.3 教师内化教材“研”的过程 |
6.3.4 教师外化教材“读”的过程 |
6.4“常见的量”部分课例分析——追溯数学知识的形成过程 |
6.4.1 执教教师、学生与教学主题 |
6.4.2 课标、教材、教师教学用书中的“认识钟表” |
6.4.3 教师内化教材“研”的过程 |
6.4.4 教师外化教材“读”的过程 |
6.5“探索规律”部分课例分析——丰富数学知识的表现形式 |
6.5.1 执教教师、学生与教学主题 |
6.5.2 课标、教材、教师教学用书中的“数学广角——数与形” |
6.5.3 教师内化教材“研”的过程 |
6.5.4 教师外化教材“读”的过程 |
6.6“代数初步”部分课例分析——追溯数学知识的形成过程 |
6.6.1 执教教师、学生与教学主题 |
6.6.2 课标、教材、教师教学用书中的“用字母表示数” |
6.6.3 教师内化教材“研”的过程 |
6.6.4 教师外化教材“读”的过程 |
6.7“数与代数”模块各教学课例研读设计的形成过程 |
6.7.1 各教学课例研读设计的形成过程 |
6.7.2 微循环研究过程的作用 |
第7章 研究的结论与反思 |
7.1 研究的结论 |
7.2 基于研究结论的启示 |
7.3 研究的反思 |
7.4 结束语 |
参考文献 |
附录 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(9)基于SOLO分类理论的三角函数教学设计研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)三角函数在高中数学中的重要地位 |
(二)课程标准与教科书的三角函数部分变化情况 |
(三)三角函数教学中存在的问题 |
(四)SOLO分类理论指导数学教学现状 |
二、研究意义 |
三、研究方法 |
(一)文献综述法 |
(二)问卷调查法 |
(三)访谈法 |
(四)案例研究法 |
四、研究框架及创新之处 |
(一)研究框架 |
(二)创新之处 |
第二章 文献综述 |
一、SOLO分类理论 |
(一)SOLO分类理论的来源及内涵 |
(二)SOLO分类理论的研究现状 |
二、三角函数教与学的研究 |
(一)国内研究状况 |
(二)国外研究状况 |
第三章 基于SOLO理论的三角函数教学设计 |
一、基于SOLO理论的三角函数教学设计前期分析 |
(一)基于SOLO理论的三角函数教学设计前期分析策略 |
(二)案例分析 |
二、基于SOLO理论的三角函数的教学目标设计 |
(一)基于SOLO理论的三角函数的教学目标设计策略 |
(二)案例分析 |
三、基于SOLO理论的三角函数的教学重、难点解析 |
(一)基于SOLO理论的三角函数的教学重、难点解析策略 |
(二)案例分析 |
四、基于SOLO理论的三角函数的课堂提问设计 |
(一)基于SOLO理论的三角函数的课堂提问设计策略 |
(二)案例分析 |
五、基于SOLO理论的三角函数的例、习题编制 |
(一)基于SOLO理论的三角函数的例、习题编制策略 |
(二)案例分析 |
六、基于SOLO理论的三角函数的教学评价设计 |
(一)基于SOLO理论的三角函数的教学评价设计方法 |
(二)案例分析 |
第四章 基于SOLO理论的《三角函数的概念》教学设计实践研究 |
一、研究目的 |
二、研究思路 |
三、研究过程 |
(一)研究对象与方法 |
(二)非SOLO理论的《三角函数的概念》教学过程设计 |
(三)利用SOLO理论对教学设计进行修改优化 |
四、实验数据统计与结果分析 |
(一)测试卷说明 |
(二)实验数据统计与分析 |
(三)实验结果总结与评价 |
(四)教师访谈 |
第五章 总结与展望 |
一、研究结论 |
二、研究不足与展望 |
(一)研究不足 |
(二)研究展望 |
注释 |
参考文献 |
附录 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(10)基于运动与相互作用观培养的高中物理教学策略研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 问题的提出 |
1.1.1 物理学科核心素养的形成需求 |
1.1.2 物理教师专业发展的迫切需要 |
1.2 文献综述 |
1.2.1 关于物理观念的研究 |
1.2.2 物理知识与物理概念的内涵 |
1.2.3 关于运动与相互作用观念的研究 |
1.2.4 物理观念的培养策略 |
1.2.5 研究述评 |
1.3 研究的创新之处 |
1.4 研究目的与内容 |
1.4.1 研究目的 |
1.4.2 研究内容 |
1.5 研究方法 |
1.6 研究意义 |
1.7 研究思路 |
第二章 概念界定及理论基础 |
2.1 核心概念界定 |
2.1.1 物理观念 |
2.1.2 运动与相互作用观念 |
2.2 理论基础 |
2.2.1 奥苏贝尔认知同化学习理论 |
2.2.2 布鲁纳结构主义 |
2.3 必修课程中蕴含的运动与相互作用观念内容梳理 |
2.3.1 人教版必修1 知识梳理 |
2.3.2 人教版必修2 知识梳理 |
2.3.3 运动与相互作用观念的内涵及结构梳理 |
2.3.4 运动观念的内涵及高中物理相关知识结构梳理 |
2.3.5 相互作用观念的内涵及高中物理相关知识结构梳理 |
2.3.6 运动与相互作用观念的内涵及高中物理相关知识结构梳理 |
第三章 高中生运动与相互作用观的现状调查 |
3.1 调查设计说明 |
3.2 调查对象 |
3.3 调查工具 |
3.4 调查内容 |
3.5 调查维度 |
3.6 调查结果及分析 |
3.6.1 学生对于物理观念的学习现状调查 |
3.6.2 学生眼中目前教师物理观念的教学现状评价 |
3.7 问卷分析总结 |
第四章 促进高中生运动与相互作用观念形成的教学策略 |
4.1 重视学生认知经验,帮助学生树立观念意识 |
4.1.1 摒弃错误认知,树立正确物理观念 |
4.1.2 善用复习课,在问题解决中,帮助学生树立物理观念 |
4.2 发展学生学习兴趣,促进学生观念的养成 |
4.3 了解知识的发展进程,掌握知识之间的联系 |
4.3.1 通过例题讲解,寻找知识之间的联系 |
4.3.2 结合物理学史,让学生了解物理知识的发展 |
4.4 善于总结归纳,建构知识框架 |
4.5 联系生活,创设物理情景,让物理知识形象生于学生头脑之中 |
第五章 基于运动观形成的教学设计 |
第六章 总结与展望 |
6.1 研究总结 |
6.2 反思与不足 |
参考文献 |
致谢 |
附录 高中生运动与相互作用观的现状调查问卷 |
作者简介 |
伊犁师范大学硕士研究生学位论文导师评阅表 |
四、一道常见习题的证明与推广(论文参考文献)
- [1]民国时期(1912-1940)大学入学数学试题研究[D]. 徐思迪. 四川师范大学, 2021(12)
- [2]我国小学“统计与概率”教材内容的分析与比较 ——基于统计活动过程的视角[D]. 蒋苏杰. 南京师范大学, 2021
- [3]几何变换思想在初中几何教学中的渗透与应用研究[D]. 白方. 上海师范大学, 2021(07)
- [4]高一学生函数概念CPFS结构调查研究[D]. 罗丹. 天津师范大学, 2021(09)
- [5]《发展汉语(高级口语)》与《高级汉语口语》教材练习题的比较研究[D]. 栾威. 沈阳大学, 2021(10)
- [6]基于波利亚解题思想下的高中三角函数解题策略研究[D]. 王秋硕. 哈尔滨师范大学, 2021(08)
- [7]高中数学人教A版新旧教材“不等式”部分比较研究[D]. 魏嘉. 哈尔滨师范大学, 2021(08)
- [8]小学数学教师研读教材的实践研究 ——以Z名师工作室为例[D]. 罗瑞. 云南师范大学, 2021(08)
- [9]基于SOLO分类理论的三角函数教学设计研究[D]. 孙杰. 哈尔滨师范大学, 2021(08)
- [10]基于运动与相互作用观培养的高中物理教学策略研究[D]. 王曼. 伊犁师范大学, 2021(12)