一、用数学归纳法证明一类不等式的技巧(论文文献综述)
沈家俊[1](2021)在《HPM视角下代数不等式的教学 ——以均值不等式、柯西不等式为例》文中指出不等式是高中数学中最重要的章节之一,也是高考核心内容之一。不等式内容所渗透的“元”、“次数”、“项数”和“结构”,适用于高中数学全部内容,可以说,学好不等式,也就学好了高中数学。近年来,由于数学史的教育价值日益显现,并且融入数学史的数学教学在推进新课程改革和素质教育进程中发挥着至关重要的作用。但是我国的数学史教学案例比较缺乏,且因融入方式单一、融入深度不够等问题无法与现实教学很好切合。课堂教学的HPM案例能很好地将数学史与数学教育进行整合,并有效提升数学教师的教学成效与学生的数学学科核心素养。基于此,本文针对必修第一册2.2基本不等式、选修4-5第三讲柯西不等式两部分内容分别开发了HPM教学案例。首先针对上述两个教学内容进行数学史料的搜集与加工;然后基于HPM视角设计不等式的教学案例,运用重构历史的方式揭示历史背景与历史发展过程,并预测学生在学习过程中可能存在的认知障碍和容易出现的错误,设计基于数学史的数学课堂活动,通过师生共作针对性地解决疑难点;最后通过课后师生调研反馈讨论数学史融入课堂的教学效果。通过教学实践和调研分析得出如下结论:融入数学史的不等式教学案例能够有效激发学生的学习兴趣,树立学生的自信心,启发学生的人格成长,拓宽学生的视野,了解多元文化的数学。本文针对具体问题进行了HPM案例的设计和教学效果的探讨,针对每个案例都增设了案例升华,对问题进行了推广,旨在通过本文的研究为数学史融入不等式的教学案例提供参考。
逄萌[2](2020)在《高中数学竞赛中的数列问题研究》文中认为数学竞赛是介于初等数学与高等数学之间,又不同于初等数学与高等数学的存在,其本身具有巨大的教育研究价值。数列作为竞赛数学中重要的组成部分,与初等数学和高等数学中数列联系都十分紧密,对其进行研究,将极大地丰富竞赛数学的内容,有助于推动竞赛数学的发展,同时也有助于学生对初等数学和高等数学相关数列问题的学习。对于学生来说,可以更加全面地了解数列的性质及其特点,提高他们的解题能力;对于教师来说,可以丰富其教学内容,将研究成果用来指导学生参加数学竞赛;对于命题者来说,也可以给他们命题提供帮助。本文采用文献分析法和行动研究法,搜集了2010—2019最近十年间国际奥林匹克数学竞赛(IMO)、中国奥林匹克数学竞赛(COM)、全国高中数学联赛、中国女子数学奥林匹克(CGMO)、中国东南地区数学奥林匹克(CSMO)、中国西部数学奥林匹克(CWMO)、中国北方数学奥林匹克邀请赛(NMO)的数列问题,将收集到的所有数列问题进行分类归纳。系统研究了数列在数学竞赛中出现的题目类型特点,针对每一类型的数列问题分别从解题方法、难度分析、出现频率、考察方式、典型例题五个维度进行分析研究进而得出结论。最后,试图发现竞赛数学中的数列问题能带给高考数学数列问题以及未来数学教育改革的启示。对本研究存在的优势与局限做出分析并给出思考小结和建议,希望本研究能够得到实践上的应用。
霍雯[3](2020)在《数学史融入高中数学的教学案例研究 ——以不等式为例》文中研究表明近年来,数学史的教育价值日益凸显,融入数学史的课程教学为数学教育开辟了一条崭新的道路,在推进新课程改革和素质教育进程中发挥着重要作用。但我国融入数学史的教学现状并不乐观,其中数学史教学案例的缺乏和现有案例与教学实际不够切合是两个非常重要的因素。融入数学史的教学案例研究不仅可以缓解案例缺乏的问题,还能为案例开发提供思路和方向。不等式与函数、数列等具有紧密的联系,在高考中占据着重要的地位,但不等式部分的数学史案例仍比较缺乏。基于此,本文依托高中不等式的内容,设计了“均值不等式”、“柯西不等式”、“数学归纳法证明不等式”三个融入数学史的教学案例。在案例的开发过程中探讨融入数学史的教学案例开发流程:主题确定;数学史料的挖掘与收集;数学史料的整理与分析;教学案例的设计;课堂教学检验。本文基于历史的视角设计不等式的教学案例,从重构历史,比较方法,介绍人物出发,设计过程、方法、人物三条数学史融入主线。通过再现不等式的发展过程和证明方法,创设活动,重构问题,同时引用着名数学家的资料培养学生钻研探索的数学精神。最后本文通过教学检验案例。教学实践表明:本研究开发的教学案例能够有效激发学生的学习兴趣,丰富学生的数学史知识和数学思维,受到学生的认同和好评。结合访谈结果,本文完善并反思教学案例,得出以下结论:(1)在教学案例开发过程中,适当增加显性史料,诸如等周问题之类的显性史料更能给学生直观的感受,增加学生的学习兴趣。(2)案例要根据数学主题的特征选择合适的设计主线,并不是所有数学主题都有鲜明的历史发展顺序。(3)数学史融入不等式的课堂教学能够有效提高学生对不等式的认知和理解,培养学生的兴趣。基于此,提出了案例开发和案例设计两方面的建议:(1)建立数学史与《课标》和教材的联系,充分发挥数学史的教育价值和学科价值。开发的教学案例要符合高中数学教学的要求,合理地安排教学过程。(2)不能建构数学史的象牙塔。数学史的融入应该与教学实际和学生水平相结合,以学生容易接受的形式融入,比如穿插数学故事,播放视频和动画等,但不能脱离数学史的底蕴和特征。通过融入数学史的教学案例研究,以期为一线教师的不等式教学和高中阶段其他主题的案例开发提供参考。
兰彧[4](2020)在《高中数学资优生数学推理能力的调查研究》文中提出当数学命题中出现一个或几个已知的前,或者是出现了已知的事实,我们可以通过一定的合适的思维过程去推导出新的结论,这样能证明到新的命题的真实性,这是推理的定义。在日常的学习生活中,我们离不开推理,在数学学习中,推理更加重要,是一种基本的思维方式。高中数学课程标准中对学生的推理能力有一定的要求,在整个高中数学学习中,希望教师注重学生的推理能力的培养和发展,并贯穿到整个数学学习过程中。推理能力的培养在数学能力培养中占有举足轻重的位置。笔者查阅文献后,发现关于数学推理的理论分析和教学实践的文章并不多,尤其是实践定量分析的文章非常少,而有关数学推理评价方面的文章更是寥寥无几。基于此,本研究从实证角度对数学资优生的数学推理能力进行调查,编制了数学推理测试卷,到上海某重点高中进行了测试,回收测试卷后进行分析,划分了不同水平的高中数学资优生的数学推理能力,并给出相关教学建议,希望能促进高中资优生数学推理能力的高和发展。本研究笔者根据专业所学和实习感受,确定了围绕高中数学资优生的数学推理能力现状展开研究,首先,笔者查找了国内外很多资料文献,进行阅读后,确定了研究方法,即先采用调查问卷法,根据测试结果,再采用访谈研究法。根据编制的测试卷测试后得到的结果,笔者采用了SOLO分类理论,对参加测试的学生的数学推理能力水平进行评价,最终将数学推理能力划分为四个由低到高的水平:U、M、R、E水平。之后笔者和任课教师及两名数学资优生进行了访谈。通过数据结果、访谈内容进行归纳分析,结合整个调查分析所得结果,给出实际的教学对策与建议,上升为教学经验,进行总结。本研究主要研究了以下四个问题:(1)高中数学资优生对于数学推理有什么样的认识?(2)高中数学资优生在数学推理能力上的现状如何?(3)高中数学资优生的数学推理能力是否存在性别差异?希望通过研究,能帮助教师更好的培养高中生的数学推理能力,根据研究结果,能为高中数学教学供哪些有意义的参考建议?针对上述问题,研究结果表明:(1)高中数学资优生对数学推理有比较清晰的认识,他们能意识到推理在数学学习中的重要性,通过平时学习与反复练习,他们的推理能力在不断高,能采用合适的数学推理方法,如比较法、综合法、反证法及数学归纳法等解题。(2)高中数学资优生已经有比较成熟的数学推理能力,能够通过题目给出的条件,进行相应的观察、推理、计算,他们的数学推理水平大多数处于R水平,少部分能达到E水平。(3)高中数学资优生,男、女生的数学推理能力水平是相近的,男生的解题能力略优于女生,女生的表达能力和计算能力略优于男生,整体看来,男女生在数学推理能力上的差距是不明显的,是相近的。希望教师要意识到数学推理能力的高是一个过程性的积累,可以在课堂中为学生供一些趣味性的实践活动,吸引学生的注意力。针对资优生的学习能力和发展情况设计出一个完整、系统的培养计划,并且笔者希望这个培养计划是循序渐进的,以便能针对性地引导资优生升自己的数学推理能力。
刘校星[5](2019)在《基于波利亚解题理论的高考数列问题解题策略研究》文中研究指明数列作为高考的重要考点之一,是高中数学内容的重要部分,也是今后大学微积分中极限概念的初始入口。一般在高考考查中,除了数列基础运算,还综合了其它不等式、几何、高等数学思想等知识点。本文选取了全国主要高考卷:浙江卷、北京卷、上海卷、江苏卷、山东卷以及全国卷,对近三年的高考数列试题进行分析,发现数列真题在高考中的命题形式多样,根据联结知识点的不同,可划分为数列简单计算题和证明题、“数列+不等式”、“数列+几何”、“数列+新定义”“数列+应用”、“数列+高等数学思想”七类,结合波利亚解题法,针对每一类数列试题探索解题步骤、设计解题流程图,发现解题策略具有针对性、广泛性、导向性、灵活性的特性。波利亚在国际上享有盛誉,其解题法独树一帜。本研究依据波利亚解题四大步骤,分别从弄清问题、拟定计划、实施计划、回顾四方面,对高考数列题提出四条解题策略:(1)性质推理,定义审题。借助函数判断简单数列类型、研读题干识别新定义数列类型、联想特殊数列确定复杂数列类型;(2)发散思维,转化问题。以数代形化简几何题、建立数列模型化简应用题、运用函数思想求证数列不等式题、逆向思维证明数列命题;(3)掌握技巧,化难为简。“知三求二”、“推而广之”、“裂项求和”;(4)结果验证,过程反思。赋值检验、查漏补缺和举一反三。提出的四步解题策略,希望能对学生解题和备考提供帮助。
冯小燕[6](2019)在《文理不分科视角的数学科高考命题研究》文中指出新一轮基础教育改革以高考文理不分科及“3+3考试”为最引人注目的特征,它给课改专家、命题专家、一线教师以及相关学生都带来了严峻的挑战.恰逢以核心素养引领的修订版课标将全面实施,一线数学教师能否领悟四基、四能、三会、六素养等课标的要领?学生能否适应教、学、考同时改革的现实?本学位论文致力于文理不分科视角的数学科高考命题研究,希望能为教与学适应文理不分科改革的高考数学做点铺垫性工作,为推进中国当前基础教育改革贡献一份力量.本学位论文研究主要分为三部分:首先,以20132018年高考数学全国Ⅰ卷文、理卷为样本,深入研究《普通高中数学课程标准(2017年版)》,探索其对文、理要求有差异的地方是如何进行调整的,合理预测这些调整对未来文理不分科高考数学全国卷命题的影响.其次,以20172018年高考数学浙江卷为样本,从考试内容、命题方式、试题难度、能力要求四个维度,探讨浙江卷与《普通高中数学课程标准(2017年版)》在要求上的区别与联系,提取浙江卷值得借鉴之处.最后,基于以上研究,以编制或改编的试题案例为依托,从考试内容、命题方式、试题难度、素养考查四个方面预测未来文理不分科高考数学全国卷的命题趋势.本研究在宏观上,大胆预测了未来文理不分科的高考数学全国卷在试卷结构上将做出“入口偏向文科,中间界于文理之间,出口偏向理科”的调整;在微观上,总结了考试内容的变化,关注了命题方式的创新,分析了试题难度的调整,对比了核心素养与能力的区别.研究中列举了28道例题,编制或改编了21个试题案例,希望能为命题专家、一线教师以及相关学生提供参考.
张先波[7](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中进行了进一步梳理从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。
练冬兰[8](2019)在《国际数学测评TIMSS-A的中国本土化实证研究》文中指出TIMSS与PISA是国际上两个重要的学业成就评价研究项目,是当代教育测量的权威代表.TIMSS测评由国际教育成就评价协会(IEA)发起并实施,包含TIMSS(4/8年级)与TIMSS-A(12年级)两大系列.其中,TIMSS-A系列是中学毕业班学生参加的高中测评,只有高中数学与物理两科,国际上唯一一个以未来期望进入STEM(科学、技术、工程、数学)职业领域的学生为对象,测量其将来成为新一代科学家或者工程师所需数学、物理准备的测评项目.迄今TIMSS-A数学只在1995年、2008年、2015年展开了测评,主要测查学生学业评价与课程标准的一致性,即考核学生是否达到教学目标的要求,其所使用的测量评价理论、技术和方法代表着国际先进水平.然而,中国大陆至今还未正式参加过TIMSS-A数学测评项目.中国学生在TIMSS-A数学测评试题的表现如何?TIMSS-A数学测评对于目前我国高中数学学科核心素养测评有何借鉴性意义?这既是思考本论文的直接起因,也是本论文的研究问题.本文主要采用文献法、调查法、访谈法、数理统计法和比较法,以“如何利用TIMSS-A的试题对中国学生进行调查”为线索进行展开研究.经文献分析发现,IEA尚未完整公布TIMSS-A数学试题,且国内外对TIMSS-A数学测评试题的研究较少.因此,本文对TIMSS-A数学测评的评价框架与试题进行讨论和分析,重组TIMSS-A数学测评公开试题,选取广州市不同等级层次的七所高二理科班1295名学生进行测试,实施中国(广州)本土化实证调查.通过对题目的编码分析、图表统计等方式对施测后的数据进行定量和定性的分析,利用SPSS数据处理软件对学生的性别、学校间学生的成绩进行差异性检验,并从代数、几何、微积分三个内容维度进行认知方面的国际比较,从而多角度地观察我国学生在TIMSS-A数学试题中的表现.最后,对TIMSS-A数学测评与我国高中数学学科核心素养的评价框架进行比较,提出研发适合我国高中数学学科核心素养测评工具的相应措施.研究发现:1.本文重组的TIMSS-A数学测评公开试题有一定的有效性.每份题册的信度以克伦巴赫a系数为指标,测得每份题册a系数在768.0803.0之间,说明测试题册的信度很好;通过计算各部分与题册间的相关系数来判断测试卷的结构效度,最终得到各部分对题册总分之间的相关为**746.0到**912.0之间,表明该测验题册的结构效度良好;题册总分的区分度值集中在51.041.0之间,说明测试适区分度较好;学生在题册1、题册2、题册3、题册4上的正确率没有显着性差异,说明4份题册难度上无本质区别,题册符合TIMSS-A数学测评的要求,表明本文设计测试题册方法的合理性.2.广州学生在TIMSS-A数学测评的表现.(1)学生成绩与其学校层级正相关,学校层级越优,学生成绩越好,在统计学上存在显着性差异,广州学生平均正确率61.39%高于国际平均正确率42.95%.(2)从内容维度来看,代数领域表现最好、微积分领域最差;从认知维度来看,理解领域最好,应用领域较弱;从现实情境问题来看,学生解决TIMSS-A数学现实情境问题的能力水平不高.(3)从性别角度来看,示范性高中男女生在内容和认知维度上表现相差不大;省一级和市一级高中女生平均正确率高于男生.3.TIMSS-A数学测评是STEM学科素养测评,与我国高中数学课程内容、学科核心素养及其三个表现水平有着共通之处。
石萌萌[9](2018)在《数学归纳法在不等式证明中的一些应用》文中认为了解数学归纳法的历史发展,可以更好地明白数学归纳法的原理,这不仅是学生学会这类方法的关键,也是教师授课的前提.很多学生对数学归纳法证明不等式问题的类型缺少全面认识,导致其不能选择合适的解题方法,造成考试中失分.因此,系统地分析与研究这类问题是解决学生失分这一问题的关键,这也是本文的重点.本篇论文主要分析探究了以下四个内容:第一,通过查阅有关书籍和文献资料整理了数学归纳法的概念和原理,并总结了证明步骤;第二,根据自身所学和资料归纳了八种解题技巧,并运用具体例子进行分析,包含有替代法、传递法、分析法、比较法、加减对消法、循环法、综合法.第三,总结了学生常犯错误类型,主要包括:对初始值处理不当、未使用假设条件、项数弄错、错误使用归纳假设、机械套用步骤.第四,根据教学理论知识,对数学归纳法的学习做了三个课时的教学设计,同时对教师如何更好的上好一节课和学生如何更好的学习提出了一些学习建议.
叶景辉[10](2016)在《高考数列题的解题策略研究与试题评析》文中研究指明数列是高中数学的重点知识之一,也是中学与大学的一个过渡知识。在每年的高考试题中,数列是一个重要考点,是中学生需要重点掌握的内容之一。为此,本文主要探究数列的一些常考题型,以及解决这些问题的有效方法,并从中对相应问题作出适当的评析,在评析中进一步了解题型的注意事项。在高考中,数列题型的命题方式比较灵活,然而一些常考的题型还是会反复出现,因此,我们需要研究一些常考题型的实用方法,也从中学会区分各种题型的异同,以及它们之间的联系,这样可以更好地把握高考命题特点。本文重点研究了高考试题关于求数列的通项、求和问题、证明数列是等差或等比数列、证明数列不等式、比较大小等问题,以及题型的相应解题策略,并分析问题的解题策略图。通过这些研究,探索其中规律,把握解题的关键步骤,进一步明确命题的基本方向。与此同时,本文对每一题作出详细评析,在评析中可以了解题型之间的差异及其联系。每种题型在近几年高考试题中涉及比较频繁的方法,文中也有相关分析。基于本文的研究,对解决数列问题会有更进一步的认识,在日后的学习中带来更多方便。随着课程的不断改革,高考的命题方式也在不断更新,而一些有效的解题策略还是需要重点关注。只有把握好基础,抓住问题的本质,了解题型的内在联系,才能在高考中做到以不变应万变。在往后的工作中,将逐步完善本文的研究,希望能得到更多有价值的研究成果,提供更多有参考意义的结论。
二、用数学归纳法证明一类不等式的技巧(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、用数学归纳法证明一类不等式的技巧(论文提纲范文)
(1)HPM视角下代数不等式的教学 ——以均值不等式、柯西不等式为例(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景、研究意义以及研究问题 |
1.2 国内外研究现状 |
1.3 研究内容及结构安排 |
1.4 研究方法及技术路线 |
2 核心概念及理论基础 |
2.1 数学史的概念 |
2.2 理论基础 |
2.3 数学史融入教学的原则 |
2.4 数学史融入教学的路径 |
3 基于HPM视角下的代数不等式教学设计 |
3.1 教学设计要素 |
3.2 教学设计流程 |
3.3 数学史融入不等式的教学设计 |
4 教学案例实施与效果分析 |
4.1 均值不等式 |
4.2 柯西不等式 |
4.3 问卷设计与实施 |
4.4 访谈设计与实施 |
4.5 结果分析 |
5 结语 |
5.1 结论 |
5.2 建议 |
5.3 研究不足 |
5.4 研究展望 |
参考文献 |
附录 |
均值不等式调查问卷 |
柯西不等式问卷调查表 |
致谢 |
(2)高中数学竞赛中的数列问题研究(论文提纲范文)
中文摘要 |
英文摘要 |
1 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.3 研究目的和意义 |
1.4 研究方法和内容 |
1.4.1 研究方法 |
1.4.2 研究对象 |
1.4.3 研究工具 |
1.4.4 研究流程 |
2 理论概述 |
2.1 数学竞赛概述 |
2.1.1 国际奥林匹克数学竞赛 |
2.1.2 中国奥林匹克数学竞赛 |
2.1.3 中国区域类数学竞赛 |
2.2 高中数学竞赛的内容 |
2.3 竞赛大纲对数列的学习要求 |
2.4 数学竞赛中数列题型及分值分析 |
2.4.1 各竞赛数列问题分值占比分析 |
2.4.2 竞赛中出现的数列问题题型占比分析 |
3 数学竞赛中的基本数列 |
3.1 等差数列与等比数列 |
3.1.1 等差数列 |
3.1.2 等比数列 |
3.2 高阶等差数列 |
3.3 递推数列 |
3.4 周期数列 |
4 数学竞赛中的数列问题题型分析 |
4.1 数列求通项公式问题 |
4.1.1 解题方法 |
4.1.2 难度分析 |
4.1.3 出现频率 |
4.1.4 考察方式 |
4.1.5 例题分析 |
4.2 数列求和问题 |
4.2.1 解题方法 |
4.2.2 难度分析 |
4.2.3 出现频率 |
4.2.4 考察方式 |
4.2.5 例题分析 |
4.3 数列与函数方程结合问题 |
4.3.1 解题方法 |
4.3.2 难度分析 |
4.3.3 出现频率 |
4.3.4 考察方式 |
4.3.5 例题分析 |
4.4 数列与不等式结合问题 |
4.4.1 解题方法 |
4.4.2 难度分析 |
4.4.3 出现频率 |
4.4.4 考察方式 |
4.4.5 例题分析 |
4.5 数列与初等数论结合问题 |
4.5.1 解题方法 |
4.5.2 难度分析 |
4.5.3 出现频率 |
4.5.4 考察方式 |
4.5.5 例题分析 |
4.6 数列与组合数学结合问题 |
4.6.1 解题方法 |
4.6.2 难度分析 |
4.6.3 出现频率 |
4.6.4 考察方式 |
4.6.5 例题分析 |
4.7 数列中的存在性问题 |
4.7.1 解题方法 |
4.7.2 难度分析 |
4.7.3 出现频率 |
4.7.4 考察方式 |
4.7.5 例题分析 |
5 竞赛数学数列问题与高考数学数列问题关联分析 |
5.1 《新课标》对数列的学习要求 |
5.2 竞赛数学数列问题与高考数学数列问题的区别与联系 |
5.2.1 客观区别 |
5.2.2 内在联系 |
5.3 竞赛数学数列问题与高考数学数列问题的关联性 |
5.3.1 以竞赛数学相关定理为背景命题 |
5.3.2 以竞赛数学解题技巧为背景命题 |
5.3.3 以竞赛数学知识点交融为背景命题 |
6 总结与反思 |
6.1 优势与局限 |
6.2 建议与展望 |
6.2.1 给高中生在数学竞赛数列问题学习中的建议 |
6.2.2 给高中教师在数学竞赛数列问题教学中的建议 |
6.2.3 给命题人在数学竞赛数列问题命题中的建议 |
参考文献 |
致谢 |
(3)数学史融入高中数学的教学案例研究 ——以不等式为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
第一节 研究背景 |
一、我国“数学史融入教学”的现状 |
二、我国《课标》对数学史的要求 |
三、不等式的重要性 |
第二节 研究意义 |
一、丰富数学史融入教学的研究 |
二、提供可参考的数学史教学案例 |
三、体现数学史对教学的价值 |
第三节 研究方法 |
一、文献分析法 |
二、案例研究法 |
三、问卷调查法 |
四、访谈法 |
第二章 文献综述 |
第一节 核心概念界定 |
一、数学史 |
二、教学案例 |
第二节 国内研究动态 |
一、HPM和数学教育的研究 |
二、融入数学史的教学案例研究 |
三、融入数学史的不等式教学案例研究 |
第三节 国外研究动态 |
一、HPM和数学教育的研究 |
二、融入数学史的教学案例研究 |
第四节 国内外文献评述 |
第三章 数学史融入教学的理论分析 |
第一节 数学史融入教学的理论依据 |
一、历史发生原理 |
二、再创造思想 |
三、建构主义理论 |
第二节 数学史融入教学的原则 |
一、教育性 |
二、适切性 |
三、科学性 |
四、多样性 |
第三节 数学史融入教学的途径 |
一、创设情境 |
二、知识教学 |
三、引用名题 |
第四节 数学史融入教学的方法 |
一、数学史料融入法 |
二、教学主线融入法 |
第四章 数学史融入高中“不等式”章节的教学案例开发研究 |
第一节 教学案例开发流程 |
一、数学史料的挖掘与收集 |
二、数学史料的整理与分析 |
三、教学案例的设计 |
四、教学检验 |
第二节 数学史融入高中不等式内容的教学案例 |
一、高中不等式知识梳理 |
二、相关主题数学史料的收集与分析 |
三、数学史料与《课标》、人教版教材的对应 |
四、教学案例的设计 |
第五章 教学案例实施与结果分析 |
第一节 教学案例实施 |
第二节 研究工具设计与实施 |
一、问卷设计与实施 |
二、访谈设计与实施 |
第三节 结果分析 |
一、问卷结果分析 |
二、访谈结果分析 |
第六章 研究结论与建议 |
第一节 融入数学史的教学案例开发与检验 |
一、教学案例开发流程 |
二、教学案例开发建议 |
三、教学案例检验 |
第二节 研究不足与展望 |
参考文献 |
附录 |
致谢 |
(4)高中数学资优生数学推理能力的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究意义与价值 |
1.3 研究问题 |
第2章 文献综述 |
2.1 数学资优生 |
2.1.1 资优生的界定 |
2.1.2 数学资优生的界定 |
2.1.3 数学资优生的特点 |
2.1.4 有关资优教育和资优生的相关研究 |
2.2 数学推理能力 |
2.2.1 推理和数学推理 |
2.2.2 数学推理能力 |
2.2.3 数学推理的内涵与分类 |
2.2.4 数学推理与教学价值 |
第3章 研究的方法与过程 |
3.1 研究对象的选取 |
3.2 研究方法与工具 |
3.2.1 研究方法 |
3.2.2 研究过程与步骤 |
3.2.3 高中资优生数学推理能力的评定方案 |
3.2.4 测试卷的编制说明 |
第4章 研究结果分析 |
4.1 测试卷中客观题的数据处理 |
4.1.1 测试卷中客观题的编码 |
4.1.2 对编码的分析及数学推理能力水平分析 |
4.2 测试卷中主观题的分析 |
4.3 数学推理能力性别差异分析 |
4.4 访谈结果分析 |
4.4.1 教师访谈的过程与结果分析 |
4.4.2 学生访谈的过程与结果分析 |
第5章 研究结论与教学建议 |
5.1 研究结论 |
5.1.1 测试卷的研究结果 |
5.1.2 数学推理能力性别差异的研究结果 |
5.1.3 访谈的研究结果 |
5.2 教学建议 |
第6章 结语 |
6.1 研究中的不足 |
6.2 需要进一步研究的地方 |
参考文献 |
附录1 数学推理能力测试卷 |
附录2 测试卷客观题参考答案 |
附录3 教师访谈简要提纲 |
致谢 |
(5)基于波利亚解题理论的高考数列问题解题策略研究(论文提纲范文)
Abstract of Thesis |
论文摘要 |
1 绪论 |
1.1 研究背景 |
1.2 研究内容 |
1.3 研究目的及意义 |
2 理论基础 |
2.1 波利亚解题理论 |
2.2 数列内容概述 |
2.2.1 《普通高中数学课程标准(2017)》对数列的要求 |
2.2.2 高考考试大纲对数列内容的要求 |
2.3 数学解题策略概述 |
3 高考数列试题研究 |
3.1 试题分布 |
3.2 试题类型 |
3.3 试题考查内容 |
3.3.1 数列基础知识 |
3.3.2 基本思想方法 |
3.3.3 基本能力 |
4 高考数列试题解题分析 |
4.1 数列简单题解题分析 |
4.1.1 数列简单计算题解题分析 |
4.1.2 数列简单证明题解题分析 |
4.2 数列综合题解题分析 |
4.2.1 “数列+不等式”试题解题分析 |
4.2.2 “数列+几何”试题解题分析 |
4.2.3 “数列+新定义”试题解题分析 |
4.2.4 “数列+应用”试题解题分析 |
4.2.5 “数列+高等数学思想”试题解题分析 |
4.3 本章小结 |
5 高考数列试题解题策略 |
5.1 性质推理,定义审题 |
5.1.1 借助函数判断简单数列类型 |
5.1.2 研读题干识别新定义数列类型 |
5.1.3 联想特殊数列确定复杂数列类型 |
5.2 发散思维,转化问题 |
5.2.1 以数代形化简几何题 |
5.2.2 建立数列模型化简应用题 |
5.2.3 运用函数思想求证数列不等式题 |
5.2.4 逆向思维证明数列命题 |
5.3 掌握技巧,化难为简 |
5.3.1 “知三求二” |
5.3.2 “推而广之” |
5.3.3 “裂项求和” |
5.4 结果验证,过程反思 |
5.4.1 赋值检验 |
5.4.2 查漏补缺 |
5.4.3 举一反三 |
6 研究总结 |
6.1 研究工作总结 |
6.2 研究展望 |
参考文献 |
在学研究成果 |
致谢 |
(6)文理不分科视角的数学科高考命题研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.1.1 政策背景 |
1.1.2 实践背景 |
1.2 研究目的 |
1.2.1 把握高考数学命题的趋势 |
1.2.2 提出高中数学教学的建议 |
1.2.3 引导高中学生学习的方向 |
1.3 研究方法 |
1.4 概念界定 |
1.4.1 文理不分科 |
1.4.2 文理不分科视角 |
1.4.3 数学科高考命题 |
1.5 理论基础 |
1.6 研究框架 |
第二章 文献综述 |
2.1 聚焦文理科的高考命题差异的研究综述 |
2.2 聚焦文理不分科的高考改革的研究综述 |
2.3 聚焦数学核心素养的高考命题研究综述 |
第三章 文理不分科视角的数学科高考试卷的分析研究——以全国Ⅰ卷为例 |
3.1 考试内容差异对比 |
3.2 命题方式差异对比 |
3.3 试题难度差异对比 |
3.4 能力要求差异对比 |
第四章 文理不分科视角的数学科高考命题的案例研究——以浙江卷为例 |
4.1 考试内容研究 |
4.2 命题方式研究 |
4.3 试题难度研究 |
4.4 能力要求研究 |
第五章 文理不分科视角的数学科高考命题的趋势研究 |
5.1 考试内容变化趋势研究 |
5.2 命题方式创新趋势研究 |
5.3 试题难度控制趋势研究 |
5.4 核心素养考查趋势研究 |
第六章 总结与展望 |
6.1 研究结论 |
6.2 研究建议 |
6.2.1 对高考数学试题命制的建议 |
6.2.2 对高中数学教师教学的建议 |
6.2.3 对高中数学学生学习的建议 |
6.3 创新之处与研究展望 |
附录1:2013~2018 年高考数学全国Ⅰ卷 |
附录2:2017~2018 年高考数学浙江卷 |
参考文献 |
致谢 |
个人简历 |
(7)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)
摘要 |
Abstract |
导论 |
第一节 问题的提出 |
一、数学育人价值实现与当前课堂教学实施的矛盾 |
二、数学学科思想教学与当前教学变革的错位 |
三、学生深度学习达成与课堂教学效果的偏离 |
第二节 研究意义 |
第三节 国内外研究综述 |
一、国内研究综述 |
(一) 关于数学课程的研究 |
(二) 关于数学知识及其教学的研究 |
(三) 关于学科思想方法的研究 |
(四) 关于数学思想的研究 |
二、国外文献综述 |
第四节 研究方法 |
第五节 研究内容 |
第一章 数学思想:内涵与意义 |
第一节 数学思想的发展回溯 |
一、数学思想的发展历史及阶段 |
二、我国数学思想在教学中的发展 |
第二节 数学思想的含义 |
第三节 数学思想的特征分析 |
一、内隐性 |
二、连续性 |
三、可迁移性 |
第四节 数学思想的价值分析 |
一、数学思想的教学价值 |
二、数学思想的发展价值 |
三、数学思想的应用价值 |
第二章 中学主要数学思想及相关概念辨析 |
第一节 数学发展史上的主要数学思想 |
第二节 中学数学教学中的数学思想 |
一、数形结合思想 |
二、分类讨论思想 |
三、转化或化归思想 |
四、类比或递推思想 |
五、构造或建模思想 |
第三节 相关概念辨析 |
一、数学知识与数学思想 |
二、数学能力与数学思想 |
三、数学方法与数学思想 |
四、数学素养与数学思想 |
第三章 当前中学数学思想教学现状分析 |
第一节 中学数学思想教学现状调查的描述分析 |
一、中学数学教师思想教学的基本情况 |
二、中学教师数学思想教学现状 |
第二节 中学教师数学思想教学的影响因素分析 |
一、教师自身对于数学思想的认知 |
二、学生数学学习的阶段性与连续性 |
三、教材与学生发展之间的关联性 |
四、教学活动组织的适切性 |
第三节 问题与讨论 |
第四章 基于深度教学的中学生数学思想建立过程 |
第一节 中学生数学思想的形成过程 |
一、以观察能力为基础 |
二、以猜想能力为辅助 |
三、论证思维的建立 |
第二节 深度学习以培养学生的数学思想 |
一、深度学习之内涵 |
二、深度学习与数学思想的建立 |
三、深度学习以培养学生的数学思想 |
第三节 深度教学以促进数学思想的培养 |
一、深度教学之意涵 |
二、深度教学与数学思想的建立 |
三、深度教学以促进数学思想的培养 |
第五章 中学数学思想及其培养策略 |
第一节 学科思想的特性与数学思想的价值 |
一、学科思想的普遍性与特殊性 |
二、数学思想的学科意蕴 |
第二节 中学主要数学思想的形成过程 |
一、中学数学思想培养所必备的学习经历 |
二、中学数学思想培养的教学过程 |
三、中学主要数学思想的培养 |
第三节 中学主要数学思想的培养策略 |
一、分类讨论思想的培养策略 |
二、数形结合思想的培养策略 |
三、转化或化归思想的培养策略 |
四、递推或类比思想的培养策略 |
五、构造或建模思想的培养策略 |
结语 |
参考文献 |
附录 |
致谢 |
(8)国际数学测评TIMSS-A的中国本土化实证研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究方法 |
1.5 论文结构 |
第二章 TIMSS-A数学测评研究综述 |
2.1 相关概念的介绍 |
2.2 国外的研究现状 |
2.3 国内的研究现状 |
2.4 述评 |
第三章 TIMSS-A数学测评框架与工具 |
3.1 TIMSS-A数学测评框架结构 |
3.2 TIMSS-A数学测评试题分析 |
第四章 TIMSS-A数学测评公开试题分析与重组 |
4.1 测试题册内容的确定 |
4.2 设计题册所面临的问题 |
4.3 设计题册与原始题册的差异性比较 |
4.4 正式题册的形成 |
第五章 调查设计 |
5.1 被试 |
5.2 工具 |
5.3 数据收集与处理 |
第六章 调查结果与分析 |
6.1 测评工具的有效性 |
6.2 测评成绩统计 |
6.3 能力差异分析 |
6.4 学校差异分析 |
6.5 性别差异分析 |
6.6 趋势试题分析 |
6.7 本章小结 |
第七章 TIMSS-A数学测评成绩的国际比较 |
7.1 代数领域的认知分析 |
7.2 微积分领域的认知分析 |
7.3 几何领域的认知分析 |
7.4 本章小结 |
第八章 TIMSS-A视角下高中数学学科核心素养测评 |
8.1 数学学科核心素养及其测评 |
8.2 TIMSS-A数学测评是STEM学科素养测评 |
8.3 TIMSS-A测评对我国高中数学学科核心素养测评的启示 |
第九章 结论与展望 |
9.1 研究结论 |
9.2 研究展望 |
参考文献 |
附录1 :设计题册与原始题册的差异性比较数据 |
附录2 :国际性比较学生作答情况统计表 |
攻读硕士学位期间发表论文 |
致谢 |
(9)数学归纳法在不等式证明中的一些应用(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景 |
1.1.1 数学归纳法的重要性 |
1.1.2 数学归纳法在高中数学中的地位 |
1.2 问题的提出 |
1.3 研究的意义 |
1.4 研究的方法 |
第二章 数学归纳法的理论概述 |
2.1 数学归纳法的历史 |
2.2 数学归纳法的逻辑基础 |
2.3 数学归纳法的基本原理 |
第三章 数学归纳法在不等式证明中的应用 |
3.1 数学归纳法证明不等式的技巧类型 |
3.1.1 放缩法证明不等式 |
3.1.2 替代法证明不等式 |
3.1.3 传递法证明不等式 |
3.1.4 反证法证明不等式 |
3.1.5 比较法证明等式 |
3.1.6 加减对消法证明不等式 |
3.1.7 循环法证明不等式 |
3.1.8 综合法证明不等式 |
3.2 数学归纳法证明不等式应用中常见错误剖析 |
3.2.1 初始值处理不当 |
3.2.2 未使用假设条件 |
3.2.3 项数弄错 |
3.2.4 错误使用归纳假设 |
3.2.5 机械套用数学归纳法证明步骤 |
第四章 关于数学归纳法证明不等式的教学与学习 |
4.1 数学归纳法证明不等式的教学建议 |
4.2 数学归纳法证明不等式的教学设计 |
4.3 数学归纳法证明不等式的学习建议 |
总结 |
参考文献 |
致谢 |
(10)高考数列题的解题策略研究与试题评析(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.2.1 解题策略研究 |
1.2.2 命题研究及其应用 |
1.2.3 高考的考点研究 |
1.3 研究内容和意义 |
1.3.1 研究内容 |
1.3.2 研究意义 |
第二章 高考题型一:求数列通项公式 |
2.1 公式法 |
2.1.1 等差数列 |
2.1.2 等比数列 |
2.2 利用S_n与a_n的关系 |
2.3 综合利用递推关系 |
2.4 数学归纳法 |
2.5 累加法 |
2.6 待定系数法 |
2.6.1 形如a_(n+1)=ka_n+b( k ,b 为非零常数, k≠1) |
2.6.2 形如a_(n+1)=ka_n+bq~n( k ,b,q 为非零常数,k≠1) |
2.7 取倒数法 |
2.8 分类讨论法 |
2.9 利用解方程求解 |
2.10 利用导数的几何意义求解 |
2.11 解题策略图 |
2.12 近几年试题情况 |
2.13 本章小结 |
第三章 高考题型二:求数列的前n项和 |
3.1 公式法 |
3.1.1 等差数列 |
3.1.2 等比数列 |
3.2 错位相减法 |
3.3 裂项相消法 |
3.4 分组转化法 |
3.5 分类讨论法 |
3.5.1 类型一:公比不确定 |
3.5.2 类型二:通项含(-1)~n 等形式 |
3.5.3 类型三:通项含绝对值 |
3.6 数学归纳法 |
3.7 解题策略图 |
3.8 近几年试题情况 |
3.9 本章小结 |
第四章 高考题型三:证明数列是等差或等比数列 |
4.1 证明数列是等差数列 |
4.2 证明数列是等比数列 |
4.3 解题策略图 |
4.4 近几年试题情况 |
4.5 本章小结 |
第五章 高考题型四:证明数列不等式 |
5.1 利用放缩法证明 |
5.1.1 将通项公式放缩为裂项公式 |
5.1.2 将通项公式放缩为等比数列 |
5.2 利用数列的单调性证明 |
5.3 构造函数法证明 |
5.4 利用数学归纳法证明 |
5.5 利用基本不等式证明 |
5.6 利用贝努利不等式证明 |
5.7 解题策略图 |
5.8 近几年试题情况 |
5.9 本章小结 |
第六章 高考题型五:比较大小 |
6.1 作差法 |
6.2 数学归纳法 |
6.3 定积分法 |
6.4 解题策略图 |
6.5 近几年试题情况 |
6.6 本章小结 |
第七章 结语 |
7.1 研究总结 |
7.2 研究展望 |
参考文献 |
攻读硕士学位期间的研究成果 |
致谢 |
四、用数学归纳法证明一类不等式的技巧(论文参考文献)
- [1]HPM视角下代数不等式的教学 ——以均值不等式、柯西不等式为例[D]. 沈家俊. 西南大学, 2021(01)
- [2]高中数学竞赛中的数列问题研究[D]. 逄萌. 河南大学, 2020(02)
- [3]数学史融入高中数学的教学案例研究 ——以不等式为例[D]. 霍雯. 中央民族大学, 2020(01)
- [4]高中数学资优生数学推理能力的调查研究[D]. 兰彧. 华东师范大学, 2020(11)
- [5]基于波利亚解题理论的高考数列问题解题策略研究[D]. 刘校星. 宁波大学, 2019(06)
- [6]文理不分科视角的数学科高考命题研究[D]. 冯小燕. 福建师范大学, 2019(12)
- [7]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
- [8]国际数学测评TIMSS-A的中国本土化实证研究[D]. 练冬兰. 广州大学, 2019(01)
- [9]数学归纳法在不等式证明中的一些应用[D]. 石萌萌. 西北大学, 2018(01)
- [10]高考数列题的解题策略研究与试题评析[D]. 叶景辉. 广州大学, 2016(03)